Statistics 351 (Fall 2008)
Some Computations with the Poisson Process
The Poisson process is a continuous time stochastic process $\left\{X_{t}, t \geq 0\right\}$ satisfying the following properties.

- The increments $\left\{X_{t_{k}}-X_{t_{k-1}}, k=1, \ldots, n\right\}$ are independent for all $0 \leq t_{0} \leq t_{1} \leq \cdots \leq$ $t_{n}<\infty$ and all $n$;
- $X_{0}=0$ and there exists a $\lambda>0$ such that

$$
X_{t}-X_{s} \in \operatorname{Po}(\lambda(t-s))
$$

for $0 \leq s<t$.
Example. Suppose that $\left\{X_{t}, t \geq 0\right\}$ is a Poisson process with intensity $\lambda$. Let $0<t_{1}<$ $t_{2}<t_{3}<t_{4}$. Determine
(a) $\operatorname{Cov}\left(X_{t_{2}}-X_{t_{1}}, X_{t_{4}}-X_{t_{3}}\right)$, and
(b) $\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{4}}-X_{t_{2}}\right)$.

Solution. Recall that $X_{t}-X_{s} \in \operatorname{Po}(\lambda(t-s))$ and that disjoint increments are independent. It therefore follows that $X_{t_{2}}-X_{t_{1}}$ and $X_{t_{4}}-X_{t_{3}}$ are independent. Hence, we see that $\operatorname{Cov}\left(X_{t_{2}}-X_{t_{1}}, X_{t_{4}}-X_{t_{3}}\right)=0$ establishing (a). As for (b), we notice that $X_{t_{3}}-X_{t_{1}}$ and $X_{t_{4}}-X_{t_{2}}$ are non-disjoint increments. The trick is to notice that

$$
X_{t_{4}}-X_{t_{2}}=X_{t_{4}}-X_{t_{3}}+X_{t_{3}}-X_{t_{2}}
$$

which gives

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{4}}-X_{t_{2}}\right) & =\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{4}}-X_{t_{3}}+X_{t_{3}}-X_{t_{2}}\right) \\
& =\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{4}}-X_{t_{3}}\right)+\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}\right) \\
& =0+\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}\right)
\end{aligned}
$$

which follows as in (a) since $X_{t_{3}}-X_{t_{1}}$ and $X_{t_{4}}-X_{t_{3}}$ are disjoint increments. Similarly,

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}\right) & =\operatorname{Cov}\left(X_{t_{3}}-X_{t_{2}}+X_{t_{2}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}\right) \\
& =\operatorname{Cov}\left(X_{t_{3}}-X_{t_{2}}, X_{t_{3}}-X_{t_{2}}\right)+\operatorname{Cov}\left(X_{t_{2}}-X_{t_{1}}, X_{t_{3}}-X_{t_{2}}\right) \\
& =\operatorname{Var}\left(X_{t_{3}}-X_{t_{2}}\right)+0
\end{aligned}
$$

Since $X_{t_{3}}-X_{t_{2}} \in \operatorname{Po}\left(\lambda\left(t_{3}-t_{2}\right)\right)$, we know

$$
\operatorname{Var}\left(X_{t_{3}}-X_{t_{2}}\right)=\lambda\left(t_{3}-t_{2}\right)
$$

That is,

$$
\operatorname{Cov}\left(X_{t_{3}}-X_{t_{1}}, X_{t_{4}}-X_{t_{2}}\right)=\lambda\left(t_{3}-t_{2}\right)
$$

Example. Suppose that $\left\{X_{t}, t \geq 0\right\}$ is a Poisson process with intensity 1. Compute
(a) $P\left\{X_{5}-X_{1}=i \mid X_{4}-X_{1}=2\right\}$ for $i=3,4,5$, and
(b) $P\left\{X_{2}-X_{1}=j \mid X_{4}-X_{1}=2\right\}$ for $j=0,1,2$.

Solution. (a)

$$
\begin{aligned}
P\left\{X_{5}-X_{1}=i \mid X_{4}-X_{1}=2\right\} & =\frac{P\left\{X_{5}-X_{1}=i, X_{4}-X_{1}=2\right\}}{P\left\{X_{4}-X_{1}=2\right\}} \\
& =\frac{P\left\{X_{5}-X_{4}=i-2, X_{4}-X_{1}=2\right\}}{P\left\{X_{4}-X_{1}=2\right\}} \\
& =\frac{P\left\{X_{5}-X_{4}=i-2\right\} P\left\{X_{4}-X_{1}=2\right\}}{P\left\{X_{4}-X_{1}=2\right\}} \\
& =P\left\{X_{5}-X_{4}=i-2\right\} .
\end{aligned}
$$

Since $X_{5}-X_{4} \in \operatorname{Po}(1)$, we conclude

$$
P\left\{X_{5}-X_{4}=i-2\right\}=\frac{1}{(i-2)!} e^{-1}, \quad i=3,4,5
$$

(b)

$$
\begin{aligned}
P\left\{X_{2}-X_{1}=j \mid X_{4}-X_{1}=2\right\} & =\frac{P\left\{X_{2}-X_{1}=j, X_{4}-X_{1}=2\right\}}{P\left\{X_{4}-X_{1}=2\right\}} \\
& =\frac{P\left\{X_{4}-X_{2}=2-j, X_{2}-X_{1}=j\right\}}{P\left\{X_{4}-X_{1}=2\right\}} \\
& =\frac{P\left\{X_{4}-X_{2}=2-j\right\} P\left\{X_{2}-X_{1}=j\right\}}{P\left\{X_{4}-X_{1}=2\right\}}
\end{aligned}
$$

Since $X_{4}-X_{2} \in \operatorname{Po}(2)$, we find

$$
P\left\{X_{4}-X_{2}=2-j\right\}=\frac{2^{2-j}}{(2-j)!} e^{-2}
$$

Since $X_{2}-X_{1} \in \operatorname{Po}(1)$, we find

$$
P\left\{X_{2}-X_{1}=j\right\}=\frac{1}{j!} e^{-1}
$$

Since $X_{4}-X_{1} \in \operatorname{Po}(3)$, we find

$$
P\left\{X_{4}-X_{1}=2\right\}=\frac{3^{2}}{2!} e^{-3}
$$

Hence, combining everything gives

$$
P\left\{X_{2}-X_{1}=j \mid X_{4}-X_{1}=2\right\}=\frac{2^{2-j}}{(2-j)!} \cdot \frac{1}{j!} \cdot \frac{2!}{3^{2}}=\binom{2}{j} 2^{2-j} 3^{-2}
$$

Example. Suppose that $\left\{X_{t}, t \geq 0\right\}$ is a Poisson process with intensity 1. Compute
(c) $\operatorname{Var}\left(X_{3} \mid X_{1}=x\right)$, and
(d) $\mathbb{E}\left(X_{3} \mid X_{1}=x\right)$.

Solution. (c) Observe that $X_{3}$ and $X_{1}$ are not independent. However, $X_{3}-X_{1}$ and $X_{1}$ are independent. Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(X_{3} \mid X_{1}=x\right)=\operatorname{Var}\left(X_{3}-X_{1}+X_{1} \mid X_{1}=x\right) & =\operatorname{Var}\left(X_{3}-X_{1} \mid X_{1}=x\right)+\operatorname{Var}\left(X_{1} \mid X_{1}=x\right) \\
& =\operatorname{Var}\left(X_{3}-X_{1}\right)
\end{aligned}
$$

since $\operatorname{Var}\left(X_{1} \mid X_{1}=x\right)=0$. Using the fact that $X_{3}-X_{1} \in \operatorname{Po}(2)$ we conclude $\operatorname{Var}\left(X_{3}-X_{1}\right)=$ 2 and so

$$
\operatorname{Var}\left(X_{3} \mid X_{1}=x\right)=2
$$

(d) Similarly, we find

$$
\begin{aligned}
\mathbb{E}\left(X_{3} \mid X_{1}=x\right)=\mathbb{E}\left(X_{3}-X_{1}+X_{1} \mid X_{1}=x\right) & =\mathbb{E}\left(X_{3}-X_{1} \mid X_{1}=x\right)+\mathbb{E}\left(X_{1} \mid X_{1}=x\right) \\
& =\mathbb{E}\left(X_{3}-X_{1}\right)+x .
\end{aligned}
$$

Using the fact that $X_{3}-X_{1} \in \operatorname{Po}(2)$ we conclude $\mathbb{E}\left(X_{3}-X_{1}\right)=2$ and so

$$
\mathbb{E}\left(X_{3} \mid X_{1}=x\right)=2+x
$$

