Statistics 351 (Fall 2008)
Review of Linear Algebra
Suppose that A is the symmetric matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

Determine the eigenvalues and eigenvectors of A.

Recall that a real number λ is an eigenvalue of A if $A \mathbf{v}=\lambda \mathbf{v}$ for some vector $\mathbf{v} \neq 0$. We call \mathbf{v} an eigenvector (corresponding to the eigenvalue λ) of A. Note that if \mathbf{v} is an eigenvector of A, then so too is $\alpha \mathbf{v}$ for any non-zero real number α. The non-zero vector \mathbf{v} is a solution of the equation $A \mathbf{v}=\lambda \mathbf{v}$ if and only if \mathbf{v} is also a solution of the equation $(A-\lambda I) \mathbf{v}=0$. The equation $(A-\lambda I) \mathbf{v}=0$ has a non-zero solution if and only if the matrix $A-\lambda I$ is singular (non-invertible). The matrix $A-\lambda I$ is invertible if and only if $\operatorname{det}[A-\lambda I] \neq 0$. Therefore, in order to find the eigenvalues of A, we need to find those values of λ such that $\operatorname{det}[A-\lambda I]=0$. (The equation $\operatorname{det}[A-\lambda I]=0$ is also known as the characteristic equation of the matrix A.) Therefore, we consider

$$
A-\lambda I=\left[\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & 1 \\
0 & 1 & 3-\lambda
\end{array}\right]
$$

Since

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & 2-\lambda & 1 \\
0 & 1 & 3-\lambda
\end{array}\right] & =(1-\lambda)(2-\lambda)(3-\lambda)-(1-\lambda)-(3-\lambda) \\
& =2-9 \lambda+6 \lambda^{2}-\lambda^{3} \\
& =(2-\lambda)\left(\lambda^{2}-4 \lambda+1\right) \\
& =(2-\lambda)(\lambda-2-\sqrt{3})(\lambda-2+\sqrt{3})
\end{aligned}
$$

we conclude that there are 3 eigenvalues, namely

$$
\lambda_{1}=2, \quad \lambda_{2}=2-\sqrt{3}, \quad \lambda_{3}=2+\sqrt{3} .
$$

If λ is an eigenvalue of A, then we can determine the corresponding eigenvectors by row reduction. That is, for $\lambda_{1}=2$,

$$
\left[A-\lambda_{1} I \mid 0\right]=\left[\begin{array}{ccc|c}
-1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

For $\lambda_{2}=2-\sqrt{3}$,

$$
\left[A-\lambda_{2} I \mid 0\right]=\left[\begin{array}{ccc|c}
-1+\sqrt{3} & -1 & 0 & 0 \\
-1 & \sqrt{3} & 1 & 0 \\
0 & 1 & 1+\sqrt{3} & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 2+\sqrt{3} & 0 \\
0 & 1 & 1+\sqrt{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

For $\lambda_{3}=2+\sqrt{3}$,

$$
\left[A-\lambda_{3} I \mid 0\right]=\left[\begin{array}{ccc|c}
-1-\sqrt{3} & -1 & 0 & 0 \\
-1 & -\sqrt{3} & 1 & 0 \\
0 & 1 & 1-\sqrt{3} & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 2-\sqrt{3} & 0 \\
0 & 1 & 1-\sqrt{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the eigenvectors corresponding to a given eigenvalue λ lie in the nullspace of $[A-\lambda I]$, we conclude that a basis for the eigenspace corresponding to λ_{1} is

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

a basis for the eigenspace corresponding to λ_{2} is

$$
\mathbf{v}_{2}=\left[\begin{array}{c}
-2-\sqrt{3} \\
-1-\sqrt{3} \\
1
\end{array}\right]
$$

and a basis for the eigenspace corresponding to λ_{3} is

$$
\mathbf{v}_{3}=\left[\begin{array}{c}
-2+\sqrt{3} \\
-1+\sqrt{3} \\
1
\end{array}\right] .
$$

Diagonalize A

Since the eigenvalues of A are $\lambda_{1}=2, \lambda_{2}=2-\sqrt{3}$, and $\lambda_{3}=2+\sqrt{3}$, we conclude that

$$
D=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \lambda_{3}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2-\sqrt{3} & 0 \\
0 & 0 & 2+\sqrt{3}
\end{array}\right]
$$

The orthogonal matrix C is given by

$$
C=\left[\begin{array}{lll}
\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} & \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|} & \frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}
\end{array}\right]
$$

(That is, the i th column of C contains the elements of the normalized eigenvector corresponding to λ_{i}, which appears as the (i, i) entry of D.) Thus,

$$
C=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-2-\sqrt{3}}{3+\sqrt{3}} & \frac{-2+\sqrt{3}}{3-\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{-1-\sqrt{3}}{3+\sqrt{3}} & \frac{-1+\sqrt{3}}{3-\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{3+\sqrt{3}} & \frac{1}{3-\sqrt{3}}
\end{array}\right] .
$$

One can easily check that

$$
\begin{aligned}
C^{\prime} A C & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{-2-\sqrt{3}}{3+\sqrt{3}} & \frac{-1-\sqrt{3}}{3+\sqrt{3}} & \frac{1}{3+\sqrt{3}} \\
\frac{-2+\sqrt{3}}{3-\sqrt{3}} & \frac{-1+\sqrt{3}}{3-\sqrt{3}} & \frac{1}{3-\sqrt{3}}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] \cdot\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-2-\sqrt{3}}{3+\sqrt{3}} & \frac{-2+\sqrt{3}}{3-\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & \frac{-1-\sqrt{3}}{3+\sqrt{3}} & \frac{-1+\sqrt{3}}{3-\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{1}{3+\sqrt{3}} & \frac{1}{3-\sqrt{3}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 & 0 & 0 \\
0 & 2-\sqrt{3} & 0 \\
0 & 0 & 2+\sqrt{3}
\end{array}\right] \\
& =D .
\end{aligned}
$$

Calculate $\operatorname{det} A$
Solution 1. Since $\lambda_{1}=2, \lambda_{2}=2-\sqrt{3}$, and $\lambda_{3}=2+\sqrt{3}$, we conclude that

$$
\operatorname{det}[A]=\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3}=2(2-\sqrt{3})(2+\sqrt{3})=2
$$

Solution 2. The determinant of A can be calculated directly, namely

$$
\begin{aligned}
\operatorname{det}[A] & =\operatorname{det}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] \\
& =1 \cdot 2 \cdot 3+(-1) \cdot 1 \cdot 0+0 \cdot(-1) \cdot 1-0 \cdot 2 \cdot 0-1 \cdot 1 \cdot 1-3 \cdot(-1) \cdot(-1) \\
& =6-1-3=2
\end{aligned}
$$

Determine the quadratic form Q associated with A
Suppose that

$$
\bar{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

is a column vector in \mathbb{R}^{3}. By definition, the quadratic form Q associated with A is given by

$$
\begin{aligned}
Q(\bar{x})=\bar{x}^{\prime} A \bar{x} & =\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x_{1}-x_{2} & -x_{1}+2 x_{2}+x_{3} & x_{2}+3 x_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =x_{1}^{2}-x_{1} x_{2}-x_{1} x_{2}+2 x_{2}^{2}+x_{2} x_{3}+x_{2} x_{3}+3 x_{3}^{2} \\
& =x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}+2 x_{2} x_{3}+3 x_{3}^{2} .
\end{aligned}
$$

Determine if Q is either positive definite or non-negative definite

Solution 1. Since all the eigenvalues of A, namely $\lambda_{1}=2, \lambda_{2}=2-\sqrt{3}$, and $\lambda_{3}=2+\sqrt{3}$, are strictly positive, we conclude that A is positive definite.

Solution 2. Since

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

the three upper left block matrices are

$$
A_{1}=[1], \quad A_{2}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right], \quad \text { and } \quad A_{3}=A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

We compute $\operatorname{det}\left[A_{1}\right]=1$, $\operatorname{det}\left[A_{2}\right]=1$, and $\operatorname{det}\left[A_{3}\right]=\operatorname{det}[A]=2$. Therefore, we conclude that the quadratic form Q associated with A is positive definite since each upper left block matrix has a positive determinant.

