Statistics 351 (Fall 2008)
The Gamma Function
Suppose that $p>0$, and define

$$
\Gamma(p):=\int_{0}^{\infty} u^{p-1} e^{-u} d u
$$

We call $\Gamma(p)$ the Gamma function and it appears in many of the formulæ of density functions for continuous random variables such as the Gamma distribution, Beta distribution, Chisquared distribution, t distribution, and F distribution.
The first thing that should be checked is that the integral defining $\Gamma(p)$ is convergent for $p>0$. For now, we will assume that it is true that the Gamma function is well-defined. This will allow us to derive some of its important properties and show its utility for statistics.

The Gamma function may be viewed as a generalization of the factorial function as this first result shows.

Proposition 1. If $p>0$, then $\Gamma(p+1)=p \Gamma(p)$.
Proof. This is proved using integration by parts from first-year calculus. Indeed,
$\Gamma(p+1)=\int_{0}^{\infty} u^{p+1-1} e^{-u} d u=\int_{0}^{\infty} u^{p} e^{-u} d u=-\left.u^{p} e^{-u}\right|_{0} ^{\infty}+\int_{0}^{\infty} p u^{p-1} e^{-u} d u=0+p \Gamma(p)$.
To do the integration by parts, let $w=u^{p}, d w=p u^{p-1}, d v=e^{-u}, v=-e^{-u}$ and recall that $\int w d v=w v-\int v d w$.

If p is an integer, then we have the following corollary.
Corollary 2. If n is a positive integer, then $\Gamma(n)=(n-1)$!.
Proof. Using the previous proposition, we see that

$$
\Gamma(n)=(n-1) \Gamma(n-1)=(n-1)(n-2) \Gamma(n-2)=\cdots=(n-1)(n-2) \cdots 2 \cdot \Gamma(1) .
$$

However,

$$
\begin{equation*}
\Gamma(1)=\int_{0}^{\infty} u^{0} e^{-u} d u=\int_{0}^{\infty} e^{-u} d u=-\left.e^{-u}\right|_{0} ^{\infty}=1 \tag{1}
\end{equation*}
$$

and so

$$
\Gamma(n)=(n-1)(n-2) \cdots 2 \cdot 1=(n-1)!
$$

as required.
The next proposition shows us how to calculate $\Gamma(p)$ for certain fractional values of p.
Proposition 3. $\Gamma(1 / 2)=\sqrt{\pi}$.

Proof. By definition,

$$
\Gamma(1 / 2)=\int_{0}^{\infty} u^{-1 / 2} e^{-u} d u
$$

Making the substitution $u=v^{2}$ so that $d u=2 v d v$ gives

$$
\int_{0}^{\infty} u^{-1 / 2} e^{-u} d u=\int_{0}^{\infty} v^{-1} e^{-v^{2}} 2 v d v=2 \int_{0}^{\infty} e^{-v^{2}} d v=\int_{-\infty}^{\infty} e^{-v^{2}} d v
$$

where the last equality follows since $e^{-v^{2}}$ is an even function. We now recognize this as the density function of a $\mathcal{N}(0,1 / 2)$ random variable. That is,

$$
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{v^{2}}{2 \sigma^{2}}} d v=1
$$

and so

$$
\int_{-\infty}^{\infty} e^{-\frac{v^{2}}{2 \sigma^{2}}} d v=\sigma \sqrt{2 \pi}
$$

Choosing $\sigma^{2}=1 / 2$ gives

$$
\int_{-\infty}^{\infty} e^{-v^{2}} d v=\sqrt{\pi}
$$

and so we conclude that $\Gamma(1 / 2)=\sqrt{\pi}$ as claimed.
This proposition can be combined with Proposition 1 to show, for example, that

$$
\Gamma(3 / 2)=\Gamma(1 / 2+1)=1 / 2 \cdot \Gamma(1 / 2)=\frac{\sqrt{\pi}}{2}
$$

and

$$
\Gamma(5 / 2)=\Gamma(3 / 2+1)=3 / 2 \cdot \Gamma(3 / 2)=\frac{3 \sqrt{\pi}}{4} .
$$

For students, though, perhaps the most powerful use of the Gamma function is to compute integrals such as the following.

Example 4. Suppose that $Y \sim \operatorname{Exp}(\theta)$. Use Gamma functions to quickly compute $\mathbb{E}\left(Y^{2}\right)$.
Solution. By definition, we have

$$
\mathbb{E}\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y=\frac{1}{\theta} \int_{0}^{\infty} y^{2} e^{-y / \theta} d y
$$

Make the substitution $u=y / \theta$ so that $d y=\theta d u$. This gives

$$
\frac{1}{\theta} \int_{0}^{\infty} y^{2} e^{-y / \theta} d y=\frac{1}{\theta} \int_{0}^{\infty} \theta^{2} u^{2} e^{-u} \theta d u=\theta^{2} \int_{0}^{\infty} u^{2} e^{-u} d u=\theta^{2} \Gamma(3)
$$

By Corollary $2, \Gamma(3)=(3-1)!=2$ and so $\mathbb{E}\left(Y^{2}\right)=2 \theta^{2}$.

Example 5. If $Y \sim \operatorname{Exp}(\theta)$, then this method can be applied to compute $\mathbb{E}\left(Y^{k}\right)$ for any positive integer k. Indeed,

$$
\mathbb{E}\left(Y^{k}\right)=\frac{1}{\theta} \int_{0}^{\infty} y^{k} e^{-y / \theta} d y=\frac{1}{\theta} \int_{0}^{\infty} \theta^{k} u^{k} e^{-u} \theta d u=\theta^{k} \Gamma(k+1)=k!\theta^{k}
$$

Theorem 6. For $p>0$, the integral

$$
\int_{0}^{\infty} u^{p-1} e^{-u} d u
$$

is absolutely convergent.
Proof. Since we are considering the value of the improper integral

$$
\int_{0}^{\infty} u^{p-1} e^{-u} d u
$$

for all $p>0$, there is need to be careful at both endpoints 0 and ∞.
We begin with the easiest case. If $p=1$, then

$$
\int_{0}^{\infty} u^{0} e^{-u} d u=\int_{0}^{\infty} e^{-u} d u=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-u} d u=\lim _{N \rightarrow \infty}\left(1-e^{-N}\right)=1
$$

For the remaining cases $0<p<1$ and $p>1$ we will consider the integral from 0 to 1 and the integral from 1 to ∞ separately.
If $0<p<1$, then the integral

$$
\int_{0}^{1} u^{p-1} e^{-u} d u
$$

is improper. Thus,

$$
\int_{0}^{1} u^{p-1} e^{-u} d u=\lim _{a \rightarrow 0+} \int_{a}^{1} u^{p-1} e^{-u} d u \leq \lim _{a \rightarrow 0+} \int_{a}^{1} u^{p-1} d u=\lim _{a \rightarrow 0+} \frac{1-a^{p}}{p}=\frac{1}{p}
$$

since $e^{-u} \leq 1$ for $0 \leq u \leq 1$.
Furthermore, if $0<p<1$, then $0<u^{p-1} \leq 1$ for $u \geq 1$ and so

$$
\int_{1}^{\infty} u^{p-1} e^{-u} d u=\lim _{N \rightarrow \infty} \int_{1}^{N} u^{p-1} e^{-u} d u \leq \lim _{N \rightarrow \infty} \int_{1}^{N} e^{-u} d u=\lim _{N \rightarrow \infty}\left(1-e^{-N}\right)=1
$$

Thus, we can conclude that for $0<p<1$,

$$
\int_{0}^{\infty} u^{p-1} e^{-u} d u=\int_{0}^{1} u^{p-1} e^{-u} d u+\int_{1}^{\infty} u^{p-1} e^{-u} d u \leq \frac{1}{p}+1<\infty
$$

If $p>1$, then $u^{p-1} \in[0,1]$ and $e^{-u} \leq 1$ for $0 \leq u \leq 1$. Thus,

$$
\int_{0}^{1} u^{p-1} e^{-u} d u \leq \int_{0}^{1} u^{p-1} d u=\left.\frac{u^{p}}{p}\right|_{0} ^{1}=\frac{1}{p} .
$$

On the other hand, if $p>1$, then notice that $p-\lfloor p\rfloor \in[0,1)$ so that $0<u^{p-\lfloor p\rfloor-1} \leq 1$ for $u \geq 1$. We then have

$$
\int_{1}^{N} u^{p-1} e^{-u} d u=\int_{1}^{N} u^{p-\lfloor p\rfloor-1} u^{\lfloor p\rfloor} e^{-u} d u \leq \int_{1}^{N} u^{\lfloor p\rfloor} e^{-u} d u .
$$

Thus, integration by parts $\lfloor p\rfloor$ times (the so-called reduction formula) gives

$$
\begin{aligned}
& \int_{1}^{N} u^{\lfloor p\rfloor} e^{-u} d u \\
& \quad=-\left.e^{-u}\left(u^{\lfloor p\rfloor}+\lfloor p\rfloor u^{\lfloor p\rfloor-1}+\lfloor p\rfloor \cdot(\lfloor p\rfloor-1) u^{\lfloor p\rfloor-2}+\cdots+\lfloor p\rfloor \cdot(\lfloor p\rfloor-1) \cdots 2 \cdot u\right)\right|_{1} ^{N} \\
& \quad \\
& \quad+\lfloor p\rfloor \cdot(\lfloor p\rfloor-1) \cdots 2 \cdot 1 \cdot \int_{1}^{N} e^{-u} d u
\end{aligned}
$$

and so

$$
\lim _{N \rightarrow \infty} \int_{1}^{N} u^{\lfloor p\rfloor} e^{-u} d u=\lfloor p\rfloor!.
$$

Thus, we can conclude that for $p>1$,

$$
\int_{0}^{\infty} u^{p-1} e^{-u} d u=\int_{0}^{1} u^{p-1} e^{-u} d u+\int_{1}^{\infty} u^{p-1} e^{-u} d u \leq \frac{1}{p}+\lfloor p\rfloor!<\infty
$$

In every case we have $u^{p-1} e^{-u} \geq 0$ and so

$$
\int_{0}^{\infty}\left|u^{p-1} e^{-u}\right| d u=\int_{0}^{\infty} u^{p-1} e^{-u} d u<\infty
$$

That is, this integral is absolutely convergent, and so $\Gamma(p)$ is well-defined for $p>0$.

