
Statistics 351 (Fall 2008)
A Geometric Description of the Bivariate Normal Density Function

Recall that if X = (X1, X2)
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Example. Suppose that X1, X2 are independent N (0, 1) random variables so that the joint
density of X = (X1, X2)

′ is

fX(x1, x2) =
1

2π
exp

{
−1

2
(x2

1 + x2
2)

}
, −∞ < x1, x2 < ∞.

We can visualize the graph of fX(x1, x2) as a “sombrero” above the x1, x2-plane centred at
(0, 0). That is, consider the usual one-dimensional bell-curve and imagine rotating it around
the x2 coordinate axis to create the “sombrero.”

Formally, the level curves (or contour lines) are found when the function fX(x1, x2) is con-
stant. Setting fX(x1, x2) = C gives
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and so

−2 log(2πC) = x2
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Note that the maximal value of the function fX(x1, x2) occurs when (x1, x2) = (0, 0) and so
we have the restriction that 0 < C ≤ 1/(2π). Observe that −2 log(2πC) ≥ 0 for this range
of C so that −2 log(2πC) is just another positive constant, say K. Thus, we see that

x2
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2 = K

which describes the equation of a circle of radius
√

K centred at the origin, and explains our
description of the density fX(x1, x2) as a “sombrero.”

Example. If, instead, X = (X1, X2)
′ where X1 and X2 are independent with X1 ∈ N (µ1, σ

2
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and X2 ∈ N (µ2, σ
2
2), then the level curves of the density fX(x1, x2) are of the form(
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which describes an ellipse centred at the point (µ1, µ2) whose major and minor axes are
parallel to the x1, x2 coordinate axes.



Example. Finally, suppose that X is bivariate normal with density given by (∗) so that the
level curves of fX(x1, x2) are of the form(
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If we assume that ρ 6= 0, then it is not so obvious what the level curves are.

In order to see more clearly what is happening, consider the density function in the form

fX(x1, x2) =
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Since ΛΛΛ is a covariance matrix, we know that its eigenvalues λ1, λ2 are real. Furthermore, it
can be diagonalized as

ΛΛΛ = CDC ′

where D = diag(λ1, λ2) and C is an orthogonal matrix whose columns are the normalized
eigenvectors v1, v2 of ΛΛΛ. Thus,

ΛΛΛ−1 = (CDC ′)−1 = (C ′)−1D−1C−1 = (C−1)′D−1C−1 = (C ′)′D−1C ′ = CD−1C ′

using the fact that C−1 = C ′ since C is orthogonal. (This also tells us that the eigenvectors
of ΛΛΛ are necessarily the same as the eigenvectors of ΛΛΛ−1.) If we now consider the quadratic
form Q(x) based on ΛΛΛ−1, then we see that

Q(x) = x′ΛΛΛ−1x = x′CD−1C ′x = (x′C)D−1(C ′x) = y′D−1y

where y = C ′x. Since D−1 = diag(λ−1
1 , λ−1
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which describes the equation of an ellipse centred at (0, 0) whose major and minor axes
are parallel to the y1, y2 coordinate axes. (Notice that the major axis will be the one
corresponding to the largest eigenvalue and that the minor axis will be the one corresponding
to the smallest eigenvalue.) However, C is an orthogonal matrix so that its columns are
orthonormal. Thus, the action of C applied to any vector in R2 is simply to rotate that
vector. In particular, the angle between any two vectors is preserved. Formally, if e1 = (1, 0)′

and e2 = (0, 1)′ denote the basis vectors for the y1, y2 coordinate axes, then since the columns
of C are the eigenvectors of ΛΛΛ we see that Ce1 = v1 and Ce2 = v2 where v1 and v2 are the
eigenvectors of ΛΛΛ. Since C−1 = C ′ this says that C ′v1 = e1 and C ′v2 = e2. Furthermore,
since C is an angle-preserving rotation of the plane, so too is its inverse C ′. Thus, we
conclude that C ′ transforms the x1, x2-plane to the y1, y2-plane sending the orthonormal
basis (v1, v2) to the orthonormal basis (e1, e2). Hence, the quadratic form

Q(x) = x′ΛΛΛ−1x



describes an ellipse whose major and minor axes are parallel to the eigenvectors of ΛΛΛ. If we
consider the quadratic form

(x− µµµ)′ΛΛΛ−1(x− µµµ)

instead, then we see that this describes an ellipse centred at (µ1, µ2) whose major and minor
axes are parallel to the v1, v2 coordinate axes. That is, the effect of subtracting µµµ is to
translate the entire picture so that it is centred at (µ1, µ2) and that the major and minor
axes are the v1 + µµµ, v2 + µµµ coordinate axes

Example. Suppose that the random vector X = (X1, X2)
′ has a multivariate normal distri-

bution with mean vector µµµ = 0 and covariance matrix

ΛΛΛ =

[
1 ρ
ρ 1

]
where 0 < ρ < 1. The level curves of fX(x1, x2) are of the form
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2 = K.

In order to sketch the level curves, we will diagonalize ΛΛΛ. The characteristic equation for ΛΛΛ
is

0 = det[ΛΛΛ− λI] = (1− λ)2 − ρ2 = λ2 − 2λ + (1− ρ2) = (λ− 1− ρ)(λ− 1 + ρ)

which implies the eigenvalues of ΛΛΛ are

λ1 = 1 + ρ and λ2 = 1− ρ.

The corresponding normalized eigenvectors are
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Thus, the level curves are ellipses rotated 45◦. That is, the orthogonal matrix C which
diagonalizes ΛΛΛ is
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]
which is the rotation matrix that rotates the standard basis vectors counterclockwise by
π/4 = 45◦. Since 0 < ρ < 1 so that λ1 > λ2, we see that the major axis is parallel v1 and
the minor axis is parallel to v2.

Remark. An alternative way to see that the level curves are ellipses rotated by 45◦ is to
write
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