Statistics 351 (Fall 2008)
Simple Random Walk
Suppose that Y_{1}, Y_{2}, \ldots are i.i.d. random variables with $P\left\{Y_{1}=1\right\}=P\left\{Y_{1}=-1\right\}=1 / 2$, and define the discrete time stochastic process $\left\{S_{n}, n=0,1, \ldots\right\}$ by setting $S_{0}=0$ and

$$
S_{n}=\sum_{i=1}^{n} Y_{i}
$$

We call $\left\{S_{n}, n=0,1, \ldots\right\}$ a simple random walk (SRW).

One useful way to visualize a SRW is to graph its trajectory $n \mapsto S_{n}$. In other words, plot the pairs of points $\left(n, S_{n}\right), n=0,1,2, \ldots$ and join the dots with straight line segments.
(a) Suppose that a realization of the sequence Y_{1}, Y_{2}, \ldots produced

$$
-1,-1,-1,1,1,-1,1,1,-1,1,1,1,-1,1,1
$$

Sketch a graph of the resulting trajectory $n \mapsto S_{n}$ of the SRW.

The theory of martingales is extremely useful for analyzing stochastic processes. Recall that a stochastic process $\left\{X_{n}, n=0,1,2, \ldots\right\}$ is called a martingale if $\mathbb{E}\left(X_{n+1} \mid X_{n}\right)=X_{n}$ for all n.
(b) Review the proof that both S_{n} and $S_{n}^{2}-n$ are martingales.
(c) Use the fact that $\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{0}\right)$ for any martingale to compute $\mathbb{E}\left(S_{n}^{2}\right)$.

Even though the underlying sequence Y_{1}, Y_{2}, \ldots is comprised of independent random variables, the sequence $S_{1}, S_{2}, S_{3}, \ldots$ is comprised of dependent random variables.
(d) Compute $\operatorname{cov}\left(S_{n}, S_{n+1}\right), n=1,2, \ldots$..

The transition probabilities describe the probability that the process is at a given position at a given time. One quantity of interest is the probability that the SRW is back at the origin at time n; that is, $P\left\{S_{n}=0\right\}$. Notice that the SRW can only be at the origin after an even number of steps since the only way for it to be at 0 is for there to have been an equal number of steps to the left as to the right. This means it is notationally easier to work with $P\left\{S_{2 n}=0\right\}, n=0,1,2, \ldots$.
(e) Determine an expression for $P\left\{S_{2 n}=0\right\}, n=0,1,2, \ldots$.
(f) Try and determine an expression for $P\left\{S_{2 n}=x\right\}$ where $|x| \leq 2 n$ has even parity. (That is, x is an even integer between $-2 n$ and $2 n$.)

