
Stat 351 Fall 2008
Assignment #8 Solutions

1. Recall from Stat 251 that if X ∈ N(0, 1), then X2 ∈ χ2(1). Furthermore, recall that if Z1, . . . , Zn

are independent with Zj ∈ χ2(pj), then

n∑
j=1

Zj ∈ χ2(p1 + · · ·+ pn).

(That is, the sum of independent chi-squared random variables is itself chi-squared with degrees of
freedom additive.) Since

X′X = X2
1 + X2

2 + · · ·+ X2
n

is the sum of n i.i.d. χ2(1) random variables, we conclude

X′X ∈ χ2(n).

2. (a) Since X and Y are i.i.d. N(0, 1), we know that

3X + 4Y ∈ N(0, 32 + 42) = N(0, 25).

Normalizing implies that

Z =
3X + 4Y

5
∈ N(0, 1).

Thus,
P (3X + 4Y > 5) = P (Z > 1) .= 0.1587

using a table of normal probabilities.

2. (b) Since X and Y are independent, we know that

P (min{X, Y } > 1) = P (X > 1, Y > 1) = P (X > 1) · P (Y > 1) .= (0.1587)2

and so
P (min{X, Y } < 1) .= 1− (0.1587)2 .= 0.9748

using a table of normal probabilities.

2. (c) Since

P (|min{X, Y }| < 1) = P (−1 < min{X, Y } < 1) = P (min{X, Y } < 1)− P (min{X, Y } < −1)

and

P (min{X, Y } < −1) = 1− P (min{X, Y } > −1) = 1− P (X > −1) · P (Y > −1) .= 1− (0.8413)2

we conclude that

P (|min{X, Y }| < 1) .= [1− (0.1587)2]− [1− (0.8413)2] = (0.8413)2 − (0.1587)2
.= 0.6826

using a table of normal probabilities.



2. (d) Notice that
max{X, Y } −min{X, Y } = |X − Y |

and that X − Y ∈ N(0, 2). Normalizing implies

Z =
X − Y√

2
∈ N(0, 1)

and so we find

P (max{X, Y } −min{X, Y } < 1) = P (|X − Y | < 1) = P (|Z| < 1/
√

2 )

= P (−1/
√

2 < Z < 1/
√

2 )
.= 0.5205

using a table of normal probabilities.

2. (e) As in Problem 1. we note that X2 + Y 2 ∈ χ2(2). However, we know that χ2(2) = Γ(1, 2) =
Exp(2). Thus, if Z = X2 + Y 2 so that Z ∈ Exp(2), then

P (X2 + Y 2 ≤ 1) = P (Z ≤ 1) = 1− e−1/2.

Problem #1, page 143: Let X = (X, Y )′ with

X ∈ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and consider the change of variables to polar coordinates (R,Θ)′. The inverse of this transformation
is given by

x = r cos θ and y = r sin θ

for 0 ≤ θ < 2π, r > 0 so that the Jacobian is

J =

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣ =
∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Since the density of (X, Y )′ is

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

}
, −∞ < x, y < ∞,

it now follows from Theorem I.2.1 that the density of (R,Θ)′ is

fR,Θ(r, θ) = fX,Y (r cos θ, r sin θ) · |J |
= rfX,Y (r cos θ, r sin θ)

=
r

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)
(r2 cos2 θ − 2ρr2 sin θ cos θ + r2 sin2 θ)

}
=

r

2π
√

1− ρ2
exp

{
−r2(1− ρ sin 2θ)

2(1− ρ2)

}

for 0 ≤ θ < 2π, r > 0.



The marginal density for Θ is therefore given by

fΘ(θ) =
∫ ∞

0

r

2π
√

1− ρ2
exp

{
−r2(1− ρ sin 2θ)

2(1− ρ2)

}
dr

=
1

2π
√

1− ρ2

∫ ∞

0
r exp

{
−r2(1− ρ sin 2θ)

2(1− ρ2)

}
dr.

Making the change of variables

u =
r2(1− ρ sin 2θ)

2(1− ρ2)
so that

(1− ρ2)du

(1− ρ sin 2θ)
= rdr

implies that

fΘ(θ) =
1

2π
√

1− ρ2
· (1− ρ2)
(1− ρ sin 2θ)

∫ ∞

0
e−udu =

√
1− ρ2

2π(1− ρ sin 2θ)

provided 0 ≤ θ < 2π.

Exercise 7.1, page 134: By Definition I, we know that X and Y − ρX are normally distributed.
Therefore, by Theorem 7.1, X and Y − ρX are independent if and only if cov(X, Y − ρX) = 0. We
compute

cov(X, Y − ρX) = cov(X, Y )− cov(X, ρX) = cov(X, Y )− ρ var(X) = ρ SD(X) SD(Y )− ρ var(X)
= ρ var(X)− ρ var(X) = 0

since SD(X) ·SD(Y ) = SD(X) ·SD(X) = var(X) by the assumption that var(X) = var(Y ). Hence,
X and Y − ρX are in fact independent.

Problem #3, page 143: If the random vector (X, Y )′ has a multivariate normal distribution,
then it follows from Definition I that both X + Y and X − Y are normal random variables. If
var(X) = var(Y ), then

cov(X + Y, X − Y ) = cov(X, X)− cov(X, Y ) + cov(Y, X) + cov(Y, Y ) = var(X)− var(Y ) = 0.

Theorem V.7.1 therefore implies that X+Y and X−Y are independent since cov(X+Y, X−Y ) = 0.

Problem #9, page 144: Note that by Theorem 7.1, in order to show X1, X2, and X3 are
independent, it is enough to show that cov(X1, X2) = cov(X1, X3) = cov(X2, X3) = 0. Thus, if X1

and X2 + X3 are independent, then cov(X1, X2 + X3) = cov(X1, X2) + cov(X1, X3) = 0 and so

cov(X1, X2) = − cov(X1, X3). (1)

If X2 and X1 + X3 are independent, then cov(X2, X1 + X3) = cov(X2, X1) + cov(X2, X3) = 0 and
so

cov(X2, X1) = − cov(X2, X3). (2)

Finally, if X3 and X1+X2 are independent, then cov(X3, X1+X2) = cov(X3, X1)+cov(X3, X2) = 0
and so

cov(X3, X1) = − cov(X3, X2). (3)



Since (1), (2), and (3) must be simultaneously satisfied, the only possibility is that cov(X1, X2) =
cov(X1, X3) = cov(X2, X3) = 0. Hence, X1, X2, and X3 are independent as required.

Problem #10, page 145: Using Theorem V.3.1, the distribution of Y = (Y1, Y2)′ is

Y ∈ N

((
2
−1

)
,

(
10 5
5 5

))
and so we see that Y1 ∈ N(2, 10), Y2 ∈ N(−1, 5), and corr(Y1, Y2) = 1√

2
. Thus, by the results in

Section V.6, the distribution of Y1|Y2 = y is normal with mean 2 + 1√
2
·
√

10√
5

(y− (−1)) = y + 3 and

variance 10
(

1−
(

1√
2

)2
)

= 5. That is,

Y1|Y2 = y ∈ N(y + 3, 5).

Problem #11, page 145: Using Theorem V.3.1, the distribution of Y = (Y1, Y2)′ is

Y ∈ N

((
0
8

)
,

(
16 −2
−2 16

))
and so we see that Y1 ∈ N(0, 16), Y2 ∈ N(8, 16), and corr(Y1, Y2) = −1

8 . Thus, by the results in
Section V.6, the distribution of Y1|Y2 = 10 is normal with mean 0− 1

8 ·
4
4(10−8) = −1

4 and variance

16
(
1−

(
−1

8

)2) = 63
4 . That is,

Y1|Y2 = 10 ∈ N
(
−1

4 , 63
4

)
.

Problem #12, page 145: Let X = (X1, X2, X3)′ where X1, X2, X3 are i.i.d. N(1, 1) so that
X ∈ N(µµµ,ΛΛΛ) where

µµµ =

1
1
1

 and ΛΛΛ =

1 0 0
0 1 0
0 0 1

 .

Let Y = (U, V )′ where U = 2X1 −X2 + X3 and V = X1 + 2X2 + 3X3. If

B =
(

2 −1 1
1 2 3

)
then Y = BX. By Theorem 3.1, Y is MVN with mean

Bµµµ =
(

2 −1 1
1 2 3

)1
1
1

 =
(

2
6

)
and covariance matrix

BΛΛΛB′ =
(

2 −1 1
1 2 3

)1 0 0
0 1 0
0 0 1

 2 1
−1 2
1 3

 =
(

6 3
3 14

)
.

We can immediately conclude that U ∈ N(2, 6), V ∈ N(6, 14), and cov(U, V ) = 3 so that
corr(U, V ) = 3√

6
√

14
= 3

2
√

21
. It follows from Section V.6 that the distribution of V |U = u is

N

(
6 +

3
2
√

21

√
14√
6

(u− 2), 14
(

1− 9
4 · 21

))
.



Choosing u = 3 therefore implies that

V |U = 3 ∈ N (6.5, 12.5) .

Problem #13, page 145: Using Theorem V.3.1, the distribution of X = (X1, X2, X3)′ is

X ∈ N

0
0
0

 ,

 2 4 −5
4 9 −10
−5 −10 13


and so we see that X1 ∈ N(0, 2), X2 ∈ N(0, 9), and X3 ∈ N(0, 13). Since cov(X1, X3) = −5,
we conclude that X1 + X3 ∈ N(0, 5). Finally, we compute cov(X2, X1 + X3) = cov(X2, X1) +
cov(X2, X3) = 4− 10 = −6 and so corr(X2, X1 + X3) = − 2√

5
. Thus, by the results in Section V.6,

the distribution of X2|X1 + X3 = x is normal with mean 0 − 2√
5
· 3√

5
(x − 0) = −6x

5 and variance

9
(

1−
(
− 2√

5

)2
)

= 9
5 . That is,

X2|X1 + X3 = x ∈ N
(
−6x

5 , 9
5

)
.

Problem #14, page 145: Using Theorem V.3.1, the distribution of Y = (Y1, Y2, Y3)′ is

Y ∈ N

0
0
0

 ,

2 1 1
1 2 1
1 1 2

 .

By definition,

fY1|Y2=0,Y3=0(y) =
fY1,Y2,Y3(y, 0, 0)

fY2,Y3(0, 0)
.

From Definition III, we know

fY1,Y2,Y3(y, 0, 0) =
(

1
2π

)3/2 1√
4

e−
1
2

3
4
y2

since 2 1 1
1 2 1
1 1 2

−1

=
1
4

 3 −1 −1
−1 3 −1
−1 −1 3

 .

The joint distribution of (Y2, Y3)′ is

(Y2, Y3)′ ∈ N

((
0
0

)
,

(
2 1
1 2

))
and so

fY2,Y3(0, 0) =
1

2π
√

3
.

Thus, we conclude

fY1|Y2=0,Y3=0(y) =

(
1
2π

)3/2 1√
4

e−
1
2

3
4
y2

1
2π
√

3

=
1√
2π

√
3

2
exp

{
−1

2

(
y

2/
√

3

)2
}

which we recognize as the density function of a normal random variable with mean 0 and variance
3/4. That is,

Y1|Y2 = Y3 = 0 ∈ N
(
0, 3

4

)
.


