Stat 351 Fall 2007
Assignment \#7 Solutions

1. If $X_{1}, X_{2}$ are independent $N(0,1)$ random variables, then by Definition I, $Y_{1}=X_{1}+3 X_{2}-2$ is normal with mean $E\left(Y_{1}\right)=E\left(X_{1}\right)+3 E\left(X_{2}\right)-2=-2$ and variance $\operatorname{var}\left(Y_{1}\right)=\operatorname{var}\left(X_{1}+3 X_{2}-2\right)=$ $\operatorname{var}\left(X_{1}\right)+9 \operatorname{var}\left(X_{2}\right)+6 \operatorname{cov}\left(X_{1}, X_{2}\right)=1+9+0=10$, and $Y_{2}=X_{1}-2 X_{2}+1$ is normal with mean $E\left(Y_{2}\right)=E\left(X_{1}\right)-2 E\left(X_{2}\right)+1=1$ and variance $\operatorname{var}\left(Y_{2}\right)=\operatorname{var}\left(X_{1}-2 X_{2}+1\right)=\operatorname{var}\left(X_{1}\right)+$ $4 \operatorname{var}\left(X_{2}\right)-4 \operatorname{cov}\left(X_{1}, X_{2}\right)=1+4-0=5$. Since $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=\operatorname{cov}\left(X_{1}+3 X_{2}-2, X_{1}-2 X_{2}+1\right)=$ $\operatorname{var}\left(X_{1}\right)+\operatorname{cov}\left(X_{1}, X_{2}\right)-6 \operatorname{var}\left(X_{2}\right)=1+0-6=-5$, we conclude that $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ is multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ where

$$
\boldsymbol{\mu}=\binom{-2}{1} \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
10 & -5 \\
-5 & 5
\end{array}\right) .
$$

2. Let

$$
B=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 3 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, $\mathbf{Y}$ is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right)=\binom{6}{6}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 3 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 4 & -2 \\
3 & -2 & 8
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 3 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
4 & 9 \\
9 & 36
\end{array}\right) .
$$

3. Let

$$
B=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 2 \\
2 & 0 & -3
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, $\mathbf{Y}$ is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 2 \\
2 & 0 & -3
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 2 \\
2 & 0 & -3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & 0 \\
1 & 2 & -3
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & -1 \\
4 & 9 & -2 \\
-1 & -2 & 13
\end{array}\right) .
$$

4. Let

$$
B=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 2 \\
1 & -2 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, $\mathbf{Y}$ is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 2 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 2 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & -2 \\
-1 & 2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -2 & -2 \\
-2 & 5 & 1 \\
-2 & 1 & 5
\end{array}\right) .
$$

5 (a). Since the conditional distribution of $Y \mid X=x \in N\left(x, x^{2}\right)$, we know that $\mathbb{E}(Y \mid X)=X$ and $\operatorname{var}(Y \mid X)=X^{2}$. Therefore, it follows from Theorem II.2.1 that

$$
\mathbb{E}(Y)=\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(X)=\frac{1}{2}
$$

and from Corollary II.2.3.1 that

$$
\operatorname{var}(Y)=\mathbb{E}(\operatorname{var}(Y \mid X))+\operatorname{var}(\mathbb{E}(Y \mid X))=\mathbb{E}\left(X^{2}\right)+\operatorname{var}(X)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2}+\frac{1}{12}=\frac{5}{12} .
$$

By definition, $\operatorname{cov}(X, Y)=\mathbb{E}(X Y)+\mathbb{E}(Y) \mathbb{E}(X)$. In order to calculate $\mathbb{E}(X Y)$, notice that Theorem II.2.1 implies $\mathbb{E}(X Y)=\mathbb{E}(\mathbb{E}(X Y \mid X))$. However, by Theorem II.2.2 ("taking out what is known"), we see that

$$
\mathbb{E}(\mathbb{E}(X Y \mid X))=\mathbb{E}(X \mathbb{E}(Y \mid X))=\mathbb{E}(X \cdot X)=\mathbb{E}\left(X^{2}\right)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2} .
$$

Combining everything gives

$$
\operatorname{cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(Y) \mathbb{E}(X)=\frac{1}{12}+\left(\frac{1}{2}\right)^{2}-\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{12}
$$

5 (b). We begin by noticing that $f_{X}(x)=1,0<x<1$, and

$$
f_{Y \mid X=x}(y)=\frac{1}{x \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 x^{2}}(y-x)^{2}\right\}, \quad-\infty<y<\infty .
$$

This implies that the joint density of $X$ and $Y$ is

$$
f_{X, Y}(x, y)=f_{Y \mid X=x}(y) \cdot f_{X}(x)=\frac{1}{x \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 x^{2}}(y-x)^{2}\right\}
$$

provided $0<x<1$ and $-\infty<y<\infty$. Now let $U=Y / X$ and $V=X$ so that solving for $X$ and $Y$ gives

$$
X=V \quad \text { and } \quad Y=U V .
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
0 & 1 \\
v & u
\end{array}\right|=-v .
$$

The density of $(U, V)$ is therefore given by

$$
\begin{aligned}
f_{U, V}(u, v)=f_{X, Y}(v, u v) \cdot|J|=v f_{X, Y}(v, u v) & =v \cdot \frac{1}{v \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 v^{2}}(u v-v)^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(u-1)^{2}\right\}
\end{aligned}
$$

provided that $0<v<1$, and $-\infty<u<\infty$. We see that we can write $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$ where $f_{V}(v)=1,0<v<1$, and

$$
f_{U}(u)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(u-1)^{2}\right\}, \quad-\infty<u<\infty .
$$

Hence, we conclude that $X \in U(0,1)$ and $Y / X \in N(1,1)$ are independent.
5 (c). Notice that we can write

$$
\mathbb{E}(Y)=\mathbb{E}\left(\frac{Y}{X} \cdot X\right)
$$

Since $Y / X$ and $X$ are independent we conclude

$$
\mathbb{E}\left(\frac{Y}{X} \cdot X\right)=\mathbb{E}\left(\frac{Y}{X}\right) \mathbb{E}(X) .
$$

Hence,

$$
\mathbb{E}(Y)=\mathbb{E}\left(\frac{Y}{X}\right) \mathbb{E}(X)
$$

or, in other words,

$$
\mathbb{E}\left(\frac{Y}{X}\right)=\frac{\mathbb{E}(Y)}{\mathbb{E}(X)}
$$

6. By definition,

$$
\operatorname{corr}\left(X^{2}, Y^{2}\right)=\frac{\operatorname{cov}\left(X^{2}, Y^{2}\right)}{\sqrt{\operatorname{var}\left(X^{2}\right) \operatorname{var}\left(Y^{2}\right)}}
$$

where

$$
\operatorname{cov}\left(X^{2}, Y^{2}\right)=\mathbb{E}\left(X^{2} Y^{2}\right)-\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)
$$

We also note that if

$$
\mathbf{X}=(X, Y)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right),
$$

then $X \in N(0,1), Y \in N(0,1)$, and $\operatorname{cov}(X, Y)=\operatorname{corr}(X, Y)=\rho$. Suppose that $Z \in N(0,1)$ so that the moment generating function of $Z$ is

$$
\psi_{Z}(t)=e^{t^{2} / 2}
$$

Computing the fourth derivative gives

$$
\psi_{Z}^{(4)}(t)=\left(t^{4}+6 t^{2}+3\right) e^{t^{2} / 2}
$$

and so we conclude that

$$
\mathbb{E}\left(Z^{4}\right)=\psi_{Z}^{(4)}(0)=3
$$

Hence, we conclude that

$$
\operatorname{var}\left(X^{2}\right)=\mathbb{E}\left(X^{4}\right)-\left[\mathbb{E}\left(X^{2}\right)\right]^{2}=3-1=2 \quad \text { and } \quad \operatorname{var}\left(Y^{2}\right)=\mathbb{E}\left(Y^{4}\right)-\left[\mathbb{E}\left(Y^{2}\right)\right]^{2}=3-1=2
$$

since $\mathbb{E}\left(X^{2}\right)=\operatorname{var}(X)=1$ and $\mathbb{E}\left(Y^{2}\right)=\operatorname{var}(Y)=1$. The last thing we need to compute is $\mathbb{E}\left(X^{2} Y^{2}\right)$. Notice that Theorems II.2.1 and II.2.2 imply that

$$
\mathbb{E}\left(X^{2} Y^{2}\right)=\mathbb{E}\left(\mathbb{E}\left(X^{2} Y^{2} \mid X\right)\right)=\mathbb{E}\left(X^{2} \mathbb{E}\left(Y^{2} \mid X\right)\right)
$$

However, we see that $\mathbb{E}\left(Y^{2} \mid X\right)=\operatorname{var}(Y \mid X)+[\mathbb{E}(Y \mid X)]^{2}$ and so we can finish the calculation if we can determine the conditional distribution of $Y \mid X=x$. Fortunately, this calculation is done for us in Section V.6. That is, it is shown that $Y \mid X=x \in N\left(\rho x, 1-\rho^{2}\right)$. Hence,

$$
\mathbb{E}\left(Y^{2} \mid X\right)=\operatorname{var}(Y \mid X)+[\mathbb{E}(Y \mid X)]^{2}=1-\rho^{2}+(\rho X)^{2}=1-\rho^{2}+X^{2} \rho^{2}
$$

and so

$$
\begin{aligned}
\mathbb{E}\left(X^{2} Y^{2}\right)=\mathbb{E}\left(X^{2} \mathbb{E}\left(Y^{2} \mid X\right)\right)=\mathbb{E}\left(X^{2}\left(1-\rho^{2}+X^{2} \rho^{2}\right)\right) & =\mathbb{E}\left(X^{2}\right)-\rho^{2} \mathbb{E}\left(X^{2}\right)+\rho^{2} \mathbb{E}\left(X^{4}\right) \\
& =1-\rho^{2}+3 \rho^{2} \\
& =1+2 \rho^{2}
\end{aligned}
$$

using our earlier facts that $\mathbb{E}\left(X^{2}\right)=1$ and $\mathbb{E}\left(X^{4}\right)=3$. Finally, we have all the pieces to conclude that

$$
\operatorname{corr}\left(X^{2}, Y^{2}\right)=\frac{\operatorname{cov}\left(X^{2}, Y^{2}\right)}{\sqrt{\operatorname{var}\left(X^{2}\right) \operatorname{var}\left(Y^{2}\right)}}=\frac{\mathbb{E}\left(X^{2} Y^{2}\right)-\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}{\sqrt{\operatorname{var}\left(X^{2}\right) \operatorname{var}\left(Y^{2}\right)}}=\frac{1+2 \rho^{2}-1}{\sqrt{2 \cdot 2}}=\rho^{2}
$$

as required.

