Stat 351 Fall 2008
Assignment \#3 Solutions
Problem \#3, page 27: Suppose that $T \in t(n)$ so that the density of T is given by

$$
f_{T}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}, \quad-\infty<x<\infty .
$$

Let $Y=T^{2}$. If $y \geq 0$, then the distribution function of Y is given by

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y)=P\left(T^{2} \leq y\right)=P(-\sqrt{y} \leq T \leq \sqrt{y}) & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{T}(x) d x \\
& =\int_{0}^{\sqrt{y}} f_{T}(x) d x-\int_{0}^{-\sqrt{y}} f_{T}(x) d x
\end{aligned}
$$

Taking derivatives with respect to y gives

$$
\begin{aligned}
f_{Y}(y)=f_{T}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}-f_{T}(-\sqrt{y}) \cdot \frac{-1}{2 \sqrt{y}} & =\frac{1}{2 \sqrt{y}}\left(f_{T}(\sqrt{y})+f_{T}(-\sqrt{y})\right) \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n y} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{y}{n}\right)^{-(n+1) / 2} \\
& =\frac{\Gamma\left(\frac{1+n}{2}\right)\left(\frac{1}{n}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{y^{1 / 2-1}}{\left(1+\frac{y}{n}\right)^{(1+n) / 2}}, \quad y \geq 0 .
\end{aligned}
$$

In order to write this last line, we have used the fact that $\Gamma(1 / 2)=\sqrt{\pi}$. Notice that this is the density of an $F(1, n)$ random variable. (See page 261.)

Problem \#5, page 27: Suppose that $X \in C(0,1)$ so that the density of X is given by

$$
f_{X}(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}, \quad-\infty<x<\infty
$$

Let $Y=X^{2}$. If $y \geq 0$, then the distribution function of Y is given by

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y}) & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) d x \\
& =\int_{0}^{\sqrt{y}} f_{X}(x) d x-\int_{0}^{-\sqrt{y}} f_{X}(x) d x .
\end{aligned}
$$

Taking derivatives with respect to y gives

$$
f_{Y}(y)=f_{X}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}-f_{X}(-\sqrt{y}) \cdot \frac{-1}{2 \sqrt{y}}=\frac{1}{2 \sqrt{y}}\left(f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right)=\frac{1}{\pi \sqrt{y}} \cdot \frac{1}{1+y}, \quad y \geq 0 .
$$

Notice that this is the density of an $F(1,1)$ random variable. (See page 261 and recall that $\Gamma(1)=1$, $\Gamma(1 / 2)=\sqrt{\pi}$.)

Problem \#6, page 27: If $X \in \beta(1,1)$, then the density function of X is

$$
f_{X}(x)=\frac{\Gamma(1+1)}{\Gamma(1) \Gamma(1)} x^{1-1}(1-x)^{1-1}=1, \quad 0<x<1 .
$$

(We have used the fact that $\Gamma(2)=\Gamma(1)=1$.) Since the density of X is also that of a uniform random variable, we conclude $X \in U(0,1)$. Therefore, $\beta(1,1)=U(0,1)$.

Problem \#9, page 27: Suppose that $X \in N(0,1)$ and $Y \in \chi^{2}(n)$ are independent random variables. Let $U=\frac{X}{\sqrt{Y / n}}$ and $V=\sqrt{Y / n}$ so that solving for X and Y gives

$$
X=U V \quad \text { and } \quad Y=n V^{2}
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
0 & 2 n v
\end{array}\right|=2 n v^{2}
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(u v, n v^{2}\right) \cdot|J|=2 n v^{2} f_{X}(u v) f_{Y}\left(n v^{2}\right)
$$

using the assumed independence of X and Y. Substituting in the corresponding densities gives
$f_{U, V}(u, v)=2 n v^{2} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} v^{2} / 2} \frac{1}{\Gamma(n / 2)}\left(n v^{2}\right)^{n / 2-1} 2^{-n / 2} e^{-n v^{2} / 2}=\frac{n^{n / 2}}{2^{n / 2-1 / 2} \sqrt{\pi} \Gamma(n / 2)} v^{n} e^{-v^{2}\left(u^{2}+n\right) / 2}$
provided that $-\infty<u<\infty, 0<v<\infty$. The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\frac{n^{n / 2}}{2^{n / 2-1 / 2} \sqrt{\pi} \Gamma(n / 2)} \int_{0}^{\infty} v^{n} e^{-v^{2}\left(u^{2}+n\right) / 2} d v
$$

Making the substitution $z=v^{2}\left(u^{2}+n\right) / 2$ so that $d z=v\left(u^{2}+n\right) d v$ gives

$$
\begin{aligned}
\frac{n^{n / 2}}{2^{n / 2-1 / 2} \sqrt{\pi} \Gamma(n / 2)} \int_{0}^{\infty} v^{n} e^{-v^{2}\left(u^{2}+n\right) / 2} d v & =\frac{n^{n / 2}}{2^{n / 2-1 / 2} \sqrt{\pi} \Gamma(n / 2)}\left(u^{2}+n\right)^{-1 / 2-n / 2} 2^{n / 2-1 / 2} \int_{0}^{\infty} z^{n / 2-1 / 2} e^{-z} d z \\
& =\frac{n^{n / 2}}{\sqrt{\pi} \Gamma(n / 2)}\left(u^{2}+n\right)^{-1 / 2-n / 2} \Gamma(n / 2+1 / 2) \\
& =\frac{n^{n / 2} \Gamma(n / 2+1 / 2)}{\sqrt{\pi} \Gamma(n / 2)}\left(u^{2}+n\right)^{-1 / 2-n / 2} \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)} \frac{1}{\left(1+\frac{u^{2}}{n}\right)^{(n+1) / 2}}
\end{aligned}
$$

provided $-\infty<u<\infty$. We recognize that this is the density of a $t(n)$ random variable (see page 261), and so we conclude that $U=\frac{X}{\sqrt{Y / n}} \in t(n)$.

Problem \#10, page 28: Suppose that $X \in \chi^{2}(m)$ and $Y \in \chi^{2}(n)$ are independent random variables. Let $U=\frac{X / m}{Y / n}$ and $V=Y / n$ so that solving for X and Y gives

$$
X=m U V \quad \text { and } \quad Y=n V
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
m v & m u \\
0 & n
\end{array}\right|=m n v
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(m u v, n v) \cdot|J|=m n v f_{X}(m u v) f_{Y}(n v)
$$

using the assumed independence of X and Y. Substituting in the corresponding densities gives

$$
\begin{aligned}
f_{U, V}(u, v) & =m n v \frac{1}{\Gamma(m / 2)}(m u v)^{m / 2-1} 2^{-m / 2} e^{-m u v / 2} \frac{1}{\Gamma(n / 2)}(n v)^{n / 2-1} 2^{-n / 2} e^{-n v / 2} \\
& =\frac{m^{m / 2} n^{n / 2} 2^{-m / 2-n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} v^{m / 2+n / 2-1} u^{m / 2-1} e^{-v(m u+n) / 2}
\end{aligned}
$$

provided that $0<u<\infty, 0<v<\infty$. The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\frac{m^{m / 2} n^{n / 2} 2^{-m / 2-n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} u^{m / 2-1} \int_{0}^{\infty} v^{m / 2+n / 2-1} e^{-v(m u+n) / 2} d v
$$

Making the substitution $z=v(m u+n) / 2$ so that $d z=(m u+n) / 2 d v$ gives

$$
\begin{aligned}
\frac{m^{m / 2} n^{n / 2} 2^{-m / 2-n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} & u^{m / 2-1} \int_{0}^{\infty} v^{m / 2+n / 2-1} e^{-v(m u+n) / 2} d v \\
& =\frac{m^{m / 2} n^{n / 2} 2^{-m / 2-n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} u^{m / 2-1} 2^{m / 2+n / 2}(m u+n)^{-m / 2-n / 2} \int_{0}^{\infty} z^{m / 2+n / 2+1} e^{-z} d z \\
& =\frac{m^{m / 2} n^{n / 2}}{\Gamma(m / 2) \Gamma(n / 2)} u^{m / 2-1}(m u+n)^{-m / 2-n / 2} \Gamma(m / 2+n / 2) \\
& =\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} m^{m / 2} n^{n / 2} \frac{u^{m / 2-1}}{(m u+n)^{(m+n) / 2}} \\
& =\frac{\Gamma\left(\frac{m+n}{2}\right)\left(\frac{m}{n}\right)^{n / 2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \frac{u^{m / 2-1}}{\left(1+\frac{m u}{n}\right)^{(m+n) / 2}}
\end{aligned}
$$

provided $0<u<\infty$. We recognize that this is the density of a $F(m, n)$ random variable (see page 261), and so we conclude that $U=\frac{X / m}{Y / n} \in F(m, n)$.

Problem \#11, page 28: If $X \in \operatorname{Exp}(a)$, then a quick calculation shows that $\frac{2 X}{a} \in \operatorname{Exp}(2)$. However, comparing the exponential and chi-square densities (see page 260), we see that $\operatorname{Exp}(2)=$ $\chi^{2}(2)$. Similarly, $2 Y / a \in \operatorname{Exp}(2)=\chi^{2}(2)$. Thus, using the result of Problem \#10, we conclude that

$$
\frac{X}{Y}=\frac{2 X / a}{2 Y / a} \in F(2,2) .
$$

Problem \#23, page 29: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{(1+x)^{2}(1+x y)^{2}}, & \text { for } x, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=X$ and $V=X Y$ so that solving for X and Y gives

$$
X=U \quad \text { and } \quad Y=V / U
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
-v / u^{2} & 1 / u
\end{array}\right|=\frac{1}{u} .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u, v / u) \cdot|J|=\frac{u}{(1+u)^{2}(1+u \cdot v / u)^{2}} \cdot \frac{1}{u}=\frac{1}{(1+u)^{2}} \cdot \frac{1}{(1+v)^{2}}
$$

provided that $0<u<\infty, 0<v<\infty$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\frac{1}{(1+u)^{2}} \text { for } u>0, \quad \text { and } \quad f_{V}(v)=\frac{1}{(1+v)^{2}} \text { for } v>0
$$

Notice that both U and V have the same distribution, namely $F(2,2)$. (See page 261.)
Problem \#24, page 29: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\frac{2}{(1+x+y)^{3}} & \text { for } x, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Let $U=X+Y$ and $V=\frac{X}{X+Y}$ so that solving for X and Y gives

$$
X=U V \quad \text { and } \quad Y=U-U V
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
1-v & -u
\end{array}\right|=-u .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u v, u-u v) \cdot|J|=\frac{2}{(1+u v+u-u v)^{3}} \cdot u=\frac{2 u}{(1+u)^{3}},
$$

provided that $0<u<\infty, 0<v<1$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\frac{2 u}{(1+u)^{3}} \text { for } u>0, \text { and } f_{V}(v)=1 \text { for } 0<v<1 .
$$

Therefore, the density of $X+Y$ is

$$
f_{X+Y}(u)=\frac{2 u}{(1+u)^{3}} \text { for } u>0 .
$$

(b) Let $U=X-Y$ and $V=X$, so that solving for X and Y gives

$$
X=V \quad \text { and } \quad Y=V-U .
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right|=1 .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(v, v-u) \cdot|J|=\frac{2}{(1+v+v-u)^{3}} \cdot 1=\frac{2}{(1+2 v-u)^{3}},
$$

provided that $v>u$ and $v>0$ (i.e., $v>\max \{0, u\}$), and $-\infty<u<\infty$. If $u>0$, then $\max \{u, 0\}=u$, and so we calculate

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{u}^{\infty} \frac{2}{(1+2 v-u)^{3}} d v=\left.\frac{1}{2(1+2 v-u)^{2}}\right|_{u} ^{\infty}=\frac{1}{2(1+u)^{2}} .
$$

If $u \leq 0$, then $\max \{u, 0\}=0$, and so we calculate

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{\infty} \frac{2}{(1+2 v-u)^{3}} d v=\left.\frac{1}{2(1+2 v-u)^{2}}\right|_{0} ^{\infty}=\frac{1}{2(1-u)^{2}} .
$$

Therefore, the density of $X-Y$ is

$$
f_{X-Y}(u)=\frac{1}{2(1+|u|)^{2}} \text { for }-\infty<u<\infty .
$$

Problem \#25, page 30: Suppose that $U=X^{2} Y$ and let $V=X$. Solving for X and Y gives

$$
X=V \quad \text { and } \quad Y=\frac{U}{V^{2}}
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
v^{-2} & -2 u v^{-3}
\end{array}\right|=-v^{-2} .
$$

If the density of (X, Y) is

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x^{2} y}, & \text { for } x \geq 1, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

then the density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(v, u v^{-2}\right) \cdot|J|=\frac{1}{v^{2}} e^{-u}
$$

provided that $v \geq 1$ and $u>0$. We can now determine the density of U as follows.

Routine Way: The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{1}^{\infty} \frac{1}{v^{2}} e^{-u} d v=e^{-u}\left[-v^{-1}\right]_{1}^{\infty}=e^{-u}
$$

for $u>0$. We recognize that this is the density of an exponential random variable with parameter 1; that is, $U=X^{2} Y \in \operatorname{Exp}(1)$.

Slick Way: Since the joint density of (U, V) is

$$
f_{U, V}(u, v)= \begin{cases}v^{-2} e^{-u}, & \text { for } v \geq 1, u>0 \\ 0, & \text { otherwise }\end{cases}
$$

we can immediately conclude that U and V are independent random variables with $f_{V}(v)=v^{-2}$ for $v \geq 1$ and $f_{U}(u)=e^{-u}$ for $u>0$. And so we find (as before) that $U=X^{2} Y \in \operatorname{Exp}(1)$.

Problem \#26, page 30: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\lambda^{2} e^{-\lambda y}, & \text { for } 0<x<y \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=Y$ and $V=\frac{X}{Y-X}$ so that solving for X and Y gives

$$
X=\frac{U V}{1+V} \quad \text { and } \quad Y=U
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v(1+v)^{-1} & u(1+v)^{-2} \\
1 & 0
\end{array}\right|=-\frac{u}{(1+v)^{2}} .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(u v(1+v)^{-1}, u\right) \cdot|J|=\lambda^{2} e^{-\lambda u} \cdot \frac{u}{(1+v)^{2}}=\lambda^{2} u e^{-\lambda u} \cdot \frac{1}{(1+v)^{2}},
$$

provided that $0<u<\infty, 0<v<\infty$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\lambda^{2} u e^{-\lambda u} \text { for } u>0, \text { and } f_{V}(v)=\frac{1}{(1+v)^{2}} \text { for } v>0 .
$$

Notice that $U \in \Gamma\left(2, \lambda^{-1}\right)$ and that $V \in F(2,2)$. (See pages 260-261.)
Problem \#27, page 30: Suppose that $X_{1} \in \Gamma\left(a_{1}, b\right)$ and $X_{2} \in \Gamma\left(a_{2}, b\right)$ are independent random variables so that their joint density is

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)= \begin{cases}\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} x_{1}^{a_{1}-1} x_{2}^{a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-x_{1} / b-x_{2} / b}, & \text { for } x_{1}>0, x_{2}>0, \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=\frac{X_{1}}{X_{2}}$ and $V=X_{1}+X_{2}$ so that solving for X_{1} and X_{2} gives

$$
X_{1}=\frac{U V}{U+1} \quad \text { and } \quad X_{2}=\frac{V}{U+1} .
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial u} & \frac{\partial x_{1}}{\partial v} \\
\frac{\partial x_{2}}{\partial u} & \frac{\partial x_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v(1+u)^{-2} & u(1+u)^{-1} \\
-v(1+u)^{-2} & (1+u)^{-1}
\end{array}\right|=\frac{v}{(1+u)^{2}} .
$$

The density of (U, V) is therefore given by

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X_{1}, X_{2}}\left(u v(1+u)^{-1}, v(1+u)^{-1}\right) \cdot|J| \\
& =\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)}\left(u v(1+u)^{-1}\right)^{a_{1}-1}\left(v(1+u)^{-1}\right)^{a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-u v(1+u)^{-1} / b-v(1+u)^{-1} / b} \cdot \frac{v}{(1+u)^{2}} \\
& =\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1} v^{a_{1}+a_{2}-1}}{(1+u)^{a_{1}+a_{2}}} e^{-v / b}
\end{aligned}
$$

provided that $0<u<\infty, 0<v<\infty$. The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} \int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} d v
$$

To evaluate

$$
\int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} d v
$$

we make the substitution $z=\frac{v}{b}$ so that $d z=\frac{1}{b} d v$. This implies that

$$
\begin{aligned}
\int_{0}^{\infty} v^{a_{1}+a_{2}-1} e^{-v / b} d v=\int_{0}^{\infty}(b z)^{a_{1}+a_{2}-1} e^{-z} b d z & =b^{a_{1}+a_{2}} \int_{0}^{\infty} z^{a_{1}+a_{2}-1} e^{-z} d z \\
& =b^{a_{1}+a_{2}} \Gamma\left(a_{1}+a_{2}\right)
\end{aligned}
$$

This now implies that

$$
f_{U}(u)=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} b^{a_{1}+a_{2}} \Gamma\left(a_{1}+a_{2}\right)=\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}, \quad u>0,
$$

which we recognize as the density of a $\beta\left(a_{1}, a_{2}\right)$ random variable. (See page 260.) To find the marginal density of V we observe that since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}, \quad u>0
$$

and
$f_{V}(v)=\frac{f_{U, V}(u, v)}{f_{U}(u)}=\frac{\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{\frac{1}{a_{1}+a_{2}}} \frac{u^{a_{1}-1} v^{a_{1}+a_{2}-1}}{(1+u)^{a_{1}+a_{2}}} e^{-v / b}}{\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}}=\frac{1}{\Gamma\left(a_{1}+a_{2}\right)} v^{a_{1}+a_{2}-1} \frac{1}{b^{a_{1}+a_{2}}} e^{-v / b}, \quad v>0$.

Notice that $V=X_{1}+X_{2} \in \Gamma\left(a_{1}+a_{2}, b\right)$. (See page 260.) Alternatively, we can calculate

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\frac{1}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} v^{a_{1}+a_{2}-1} e^{-v / b} \int_{0}^{\infty} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} d u
$$

Observe that

$$
\frac{\Gamma\left(a_{1}+a_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}}, \quad u>0
$$

is the density of a $\beta\left(a_{1}, a_{2}\right)$ random variable. This implies that

$$
\int_{0}^{\infty} \frac{u^{a_{1}-1}}{(1+u)^{a_{1}+a_{2}}} d u=\frac{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)}{\Gamma\left(a_{1}+a_{2}\right)},
$$

and so we conclude that

$$
f_{V}(v)=\frac{1}{\Gamma\left(a_{1}+a_{2}\right)} \frac{1}{b^{a_{1}+a_{2}}} v^{a_{1}+a_{2}-1} e^{-v / b}, \quad v>0
$$

as before.

