2. (a) If $X \sim \operatorname{Unif}[1,3]$, then $F_{X}(x)=\frac{x-1}{2}$ for $1 \leq x \leq 3$, and if $Y \sim \mathcal{N}(0,1)$, then

$$
F_{Y}(y)=\int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

for $-\infty<y<\infty$. Since X and Y are independent, we conclude that

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)=\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

for $1 \leq x \leq 3$ and $-\infty<y<\infty$. We should also note that if $x<1$, then $F_{X}(x)=0$ and if $x \geq 3$, then $F_{X}(x)=1$. Combining everything we conclude

$$
F_{X, Y}(x, y)= \begin{cases}\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u, & \text { if } 0 \leq x \leq 2 \text { and }-\infty<y<\infty \\ \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u, & \text { if } x>3 \text { and }-\infty<y<\infty \\ 0, & \text { if } x<1 \text { and }-\infty<y<\infty\end{cases}
$$

(b) We find

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y}\left[\frac{x-1}{2} \int_{-\infty}^{y} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u,\right]=\frac{1}{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}
$$

Since $f_{X}(x)=\frac{1}{2}, 1 \leq x \leq 3$, and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2},-\infty<y<\infty$, we see that

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

as required.
(c) If $Z \in \operatorname{Exp}(4)$ is independent of X and Y, then the joint density of (X, Y, Z) is given by

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) \cdot f_{Y}(y) \cdot f_{Z}(z)=\frac{1}{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \cdot \frac{1}{4} e^{-z / 4}=\frac{1}{\sqrt{128 \pi}} e^{-\frac{1}{4}\left(z+2 y^{2}\right)}
$$

for $1 \leq x \leq 3,-\infty<y<\infty$, and $z>0$.
3. If X and Y are both discrete random variables, and their joint mass function is $p_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\sum_{x^{\prime} \leq x} \sum_{y^{\prime} \leq y} p_{X, Y}\left(x^{\prime}, y^{\prime}\right) .
$$

If X and Y are both continuous random variables, and their joint density function is $f_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d v d u
$$

4. (a) Observe that $\operatorname{cov}(X, Z)=\mathbb{E}(X Z)-\mathbb{E}(X) \mathbb{E}(Z)=\mathbb{E}(X Z)$ since $\mathbb{E}(X)=0$. But $\mathbb{E}(X Z)=$ $\mathbb{E}(X \cdot Y X)=\mathbb{E}\left(X^{2} Y\right)=\mathbb{E}\left(X^{2}\right) \mathbb{E}(Y)=0$ using the assumed independence of Y and X. Hence, we conclude that $\operatorname{cov}(X, Z)=0$.
(b) We see that

$$
\begin{aligned}
P\{Z \geq 1\}=P\{X Y \geq 1\} & =P\{X \geq 1, Y=1\}+P\{X \leq-1, Y=-1\} \\
& =P\{X \geq 1\} P\{Y=1\}+P\{X \leq-1\} P\{Y=-1\} \\
& =\frac{1}{2} P\{X \geq 1\}+\frac{1}{2} P\{X \leq-1\} \\
& =P\{X \geq 1\}
\end{aligned}
$$

using the symmetry of the normal distribution. Since

$$
P\{X \geq 1, Z \geq 1\}=P\{X \geq 1, X Y \geq 1\}=P\{X \geq 1, Y=1\}=\frac{1}{2} P\{X \geq 1\}
$$

and since

$$
P\{Z \geq 1\} \in(0,1 / 2),
$$

we conclude that

$$
P\{X \geq 1, Z \geq 1\} \neq P\{X \geq 1\} P\{Z \geq 1\}
$$

which implies that X and Z are not independent. (Note that $P\{X \geq 1\}=P\{Z \geq 1\} \approx$ 0.1587.)
(c) As in (b) we have

$$
\begin{aligned}
P\{Z \geq x\}=P\{X Y \geq x\} & =P\{X \geq x, Y=1\}+P\{X \leq-x, Y=-1\} \\
& =P\{X \geq x\} P\{Y=1\}+P\{X \leq-x\} P\{Y=-1\} \\
& =\frac{1}{2} P\{X \geq x\}+\frac{1}{2} P\{X \leq-x\} \\
& =P\{X \geq x\}
\end{aligned}
$$

using the symmetry of the normal distribution.
Since $P\{X \geq x\}=P\{Z \geq x\}$ is equivalent to saying $P\{X \leq x\}=P\{Z \leq x\}$ which in turn is equivalent to saying that $F_{X}(x)=F_{Z}(x)$, we conclude that X and Z have the same distribution (i.e., $Z \in \mathcal{N}(0,1))$.

