Statistics 351 Fall 2007 Midterm \#2 - Solutions

1. (a) Let

$$
B=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \bar{b}=\binom{-2}{0}
$$

so that

$$
B \mathbf{X}+\bar{b}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{X_{1}}{X_{2}}+\binom{-2}{0}=\binom{X_{1}-X_{2}-2}{X_{1}+X_{2}}=\binom{Y_{1}}{Y_{2}}=\mathbf{Y}
$$

By Theorem V.3.1, we conclude that $\mathbf{Y} \in N\left(B \boldsymbol{\mu}+\bar{b}, B \boldsymbol{\Lambda} B^{\prime}\right)$ where

$$
\mathbb{E}(\mathbf{Y})=B \boldsymbol{\mu}+\bar{b}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{1}{-1}+\binom{-2}{0}=\binom{0}{0}
$$

and

$$
\operatorname{cov}(\mathbf{Y})=B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
4 & 5
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 9
\end{array}\right)
$$

1. (b) From (a), we can read that $Y_{1} \in N(0,1), Y_{2} \in N(0,9)$, and $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=-1$. Hence, $\rho=\operatorname{corr}\left(Y_{1}, Y_{2}\right)=-1 / 3$ so that the density of \mathbf{Y} is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi \sqrt{8}} \exp \left\{-\frac{1}{2}\left(\frac{9 y_{1}^{2}}{8}+\frac{2 y_{1} y_{2}}{8}+\frac{y_{2}^{2}}{8}\right)\right\} .
$$

1. (c) We now find

$$
\begin{aligned}
f_{Y_{2} \mid Y_{1}=0}\left(y_{2}\right)=\frac{f_{\mathbf{Y}}\left(0, y_{2}\right)}{f_{Y_{1}}(0)} & =\frac{\frac{1}{2 \pi \sqrt{8}} \exp \left\{-\frac{1}{2}\left(\frac{9(0)^{2}}{8}+\frac{2(0) y_{2}}{8}+\frac{y_{2}^{2}}{8}\right)\right\} .}{\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}(0)\right\}} \\
& =\frac{1}{\sqrt{8} \sqrt{2 \pi}} \exp \left\{-\frac{1}{16} y_{2}^{2}\right\}
\end{aligned}
$$

In other words, the distribution of $Y_{2} \mid Y_{1}=0$ is $N(0,8)$.
2. If $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$, then since Y_{1} and Y_{2} are linear combinations of the components of \mathbf{X}, we conclude from Definition I that \mathbf{Y} has a multivariate normal distribution. Therefore, we know from Theorem V.7.1 that Y_{1} and Y_{2} are independent if and only if $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=0$. Since

$$
\begin{aligned}
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & =\operatorname{cov}\left(2 X_{1}+X_{2}+1,3 X_{1}-2 X_{2}-2\right) \\
& =\operatorname{cov}\left(2 X_{1}+X_{2}, 3 X_{1}-2 X_{2}\right) \\
& =\operatorname{cov}\left(2 X_{1}, 3 X_{1}\right)+\operatorname{cov}\left(X_{2},-2 X_{2}\right)+\operatorname{cov}\left(2 X_{1},-2 X_{2}\right)+\operatorname{cov}\left(X_{2}, 3 X_{1}\right) \\
& =6 \operatorname{var}\left(X_{1}\right)-2 \operatorname{var}\left(X_{2}\right)-\operatorname{cov}\left(X_{1}, X_{2}\right) \\
& =6(1)-2(4)-\alpha \\
& =-2-\alpha,
\end{aligned}
$$

we see that $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=0$ iff $\alpha=-2$.
3. Recall that the necessary conditions for a matrix to be the covariance matrix of some random vector are that it be symmetric and non-negative definite. (This is the content of Definition V.2.1 and Theorem V.2.1.) Hence, we see that A cannot be a covariance matrix since $\operatorname{det}(A)=-8$ so that A is not non-negative definite, D cannot be a covariance matrix since D_{2}, the upper left 2×2 block of D, has $\operatorname{det}\left(D_{2}\right)=-1$ implying that D is not nonnegative definite, and E cannot be a covariance matrix since it is not symmetric.
4. Since we are told that \mathbf{Z} has a multivariate normal distribution, we know from Definition I that Z_{1} and Z_{2} are one-dimensional normal random variables. Since \mathbf{X} and \mathbf{Y} are independent, we know that $\operatorname{cov}\left(X_{i}, Y_{j}\right)=0$ for $i=1,2, j=1,2$. We therefore calculate

- $\mathbb{E}\left(Z_{1}\right)=\mathbb{E}\left(X_{1}\right)+\mathbb{E}\left(Y_{1}\right)=0+1=1$,
- $\mathbb{E}\left(Z_{2}\right)=\mathbb{E}\left(X_{2}\right)-\mathbb{E}\left(Y_{2}\right)=0-1=-1$,
- $\operatorname{var}\left(Z_{1}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(Y_{1}\right)+2 \operatorname{cov}\left(X_{1}, Y_{1}\right)=1+2=3$,
- $\operatorname{var}\left(Z_{2}\right)=\operatorname{var}\left(X_{2}\right)+\operatorname{var}\left(Y_{2}\right)-2 \operatorname{cov}\left(X_{2}, Y_{2}\right)=2+3=5$.

Furthermore, we calculate

$$
\begin{aligned}
\operatorname{cov}\left(Z_{1}, Z_{2}\right)=\operatorname{cov}\left(X_{1}+Y_{1}, X_{2}-Y_{2}\right) & =\operatorname{cov}\left(X_{1}, X_{2}\right)-\operatorname{cov}\left(Y_{1}, Y_{2}\right)+\operatorname{cov}\left(Y_{1}, X_{2}\right)-\operatorname{cov}\left(X_{1}, Y_{2}\right) \\
& =\operatorname{cov}\left(X_{1}, X_{2}\right)-\operatorname{cov}\left(Y_{1}, Y_{2}\right) \\
& =-1+2=1 .
\end{aligned}
$$

Hence, we conclude that

$$
\boldsymbol{\mu}=\binom{1}{-1} \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{ll}
3 & 1 \\
1 & 5
\end{array}\right) .
$$

5. Notice that $P\left(X_{(1)}=X_{1}, X_{(2)}=X_{2}, X_{(3)}=X_{3}\right)=P\left(X_{1}<X_{2}<X_{3}\right)$. Therefore, conditioning on the value of X_{2} and using the law of total probability gives

$$
\begin{aligned}
P\left(X_{1}<X_{2}<X_{3}\right) & =\int_{0}^{\infty} P\left(X_{1}<x, X_{3}>x \mid X_{2}=x\right) f_{X_{2}}(x) d x \\
& =\int_{0}^{\infty} P\left(X_{1}<x\right) P\left(X_{3}>x\right) f_{X_{2}}(x) d x
\end{aligned}
$$

where the second equality follows from the fact that X_{1}, X_{2}, X_{3} are independent. Since

$$
P\left(X_{1}<x\right)=\int_{0}^{x} e^{-x_{1}} d x_{1}=1-e^{-x} \quad \text { and } \quad P\left(X_{3}>x\right)=\int_{x}^{\infty} e^{-x_{3}} d x_{3}=e^{-x}
$$

we see that

$$
P\left(X_{1}<X_{2}<X_{3}\right)=\int_{0}^{x}\left(1-e^{-x}\right) e^{-x} e^{-x} d x=\int_{0}^{\infty} e^{-2 x}-e^{-3 x} d x=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
$$

