Statistics 351 Fall 2007 Midterm \#1 - Solutions

1. (a) By definition,

$$
f_{X}(x)=\int_{x}^{\infty} 2 e^{-x} e^{-y} d y=\left.2 e^{-x}\left(-e^{-y}\right)\right|_{x} ^{\infty}=2 e^{-2 x}, \quad x>0
$$

and

$$
f_{Y}(y)=\int_{0}^{y} 2 e^{-x} e^{-y} d x=\left.2 e^{-y}\left(-e^{-x}\right)\right|_{0} ^{y}=2 e^{-y}\left(1-e^{-y}\right), \quad y>0
$$

1. (b) Since $f_{X, Y}(x, y) \neq f_{X}(x) \cdot f_{Y}(y)$, we immediately conclude that X and Y are not independent random variables.
2. (c) By definition,

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{2 e^{-x-y}}{2 e^{-2 x}}=e^{x-y}, \quad 0<x<y<\infty .
$$

1. (d) By definition,

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y \cdot f_{Y \mid X=x}(y) d y=\int_{x}^{\infty} y \cdot e^{x-y} d y
$$

Let $u=y-x$ so that $d u=d y$ and the integral above becomes

$$
\int_{x}^{\infty} y \cdot e^{x-y} d y=\int_{0}^{\infty}(u+x) e^{-u} d u=\int_{0}^{\infty} u e^{-u} d u+x \int_{0}^{\infty} e^{-u} d u=\Gamma(2)+x \Gamma(1)=1+x
$$

and so $\mathbb{E}(Y \mid X)=1+X$.

1. (e) Using (d) we find $\mathbb{E}(Y)=\mathbb{E}(\mathbb{E}(Y \mid X))=\mathbb{E}(1+X)=1+\mathbb{E}(X)$. However,

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x=\int_{0}^{\infty} 2 x e^{-2 x} d x
$$

Let $u=2 x$ so that $d u=2 d x$ and the integral above becomes

$$
\int_{0}^{\infty} 2 x e^{-2 x} d x=\frac{1}{2} \int_{0}^{\infty} u e^{-u} d u=\frac{1}{2} \cdot \Gamma(2)=\frac{1}{2} .
$$

Therefore,

$$
\mathbb{E}(Y)=1+\mathbb{E}(X)=1+\frac{1}{2}=\frac{3}{2}
$$

1. (f) If $U=X+Y$ and $V=X$, then solving for X and Y gives

$$
X=V \quad \text { and } \quad Y=U-V
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right|=-1 .
$$

Therefore, we conclude

$$
f_{U, V}(u, v)=f_{X, Y}(v, u-v) \cdot|J|=2 e^{-v-(u-v)} \cdot 1=2 e^{-u}
$$

provided that $0<2 v<u<\infty$ (or, equivalently, $0<v<\frac{u}{2}<\infty$). The marginal for U is given by

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{u / 2} 2 e^{-u} d v=\frac{u}{2} \cdot 2 e^{-u}=u e^{-u}, \quad u>0
$$

We recognize this as the density of a $\Gamma(2,1)$ random variable. That is, $U=X+Y \in$ $\Gamma(2,1)$ as required.
2. (a) We find

$$
\begin{aligned}
\mathbb{E}\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right) & =\mathbb{E}\left(X_{n} \cdot Y_{n+1} \mid X_{1}, \ldots, X_{n}\right) \\
& =X_{n} \mathbb{E}\left(Y_{n+1} \mid X_{1}, \ldots, X_{n}\right) \quad \text { (by taking out what is known) } \\
& \left.=X_{n} \mathbb{E}\left(Y_{n+1}\right) \quad \text { (since } Y_{n+1} \text { is independent of } X_{1}, \ldots, X_{n}\right) \\
& =X_{n} \cdot 1 \\
& =X_{n}
\end{aligned}
$$

and so $\left\{X_{n}, n=1,2, \ldots\right\}$ is, in fact, a martingale.
2. (b) For $n=1,2, \ldots$, we find

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(Y_{1} \cdot Y_{2} \cdots Y_{n}\right)=\mathbb{E}\left(Y_{1}\right) \cdot \mathbb{E}\left(Y_{2}\right) \cdots \mathbb{E}\left(Y_{n}\right)=1
$$

using the fact that Y_{1}, Y_{2}, \ldots are independent.
3. (a) By the law of total probability,

$$
P(X=0)=\int_{0}^{1} P(X=0 \mid A=a) f_{A}(a) d a=\int_{0}^{1}(1-a) d a=a-\left.\frac{a^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

and

$$
P(X=1)=\int_{0}^{1} P(X=1 \mid A=a) f_{A}(a) d a=\int_{0}^{1} a d a=\left.\frac{a^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}
$$

3. (b) By definition,

$$
f_{A \mid X=0}(a)=\frac{P(X=0 \mid A=a) f_{A}(a)}{P(X=0)}=\frac{(1-a) \cdot 1}{1 / 2}=2(1-a), \quad 0<a<1,
$$

and

$$
f_{A \mid X=1}(a)=\frac{P(X=1 \mid A=a) f_{A}(a)}{P(X=1)}=\frac{a \cdot 1}{1 / 2}=2 a, \quad 0<a<1 .
$$

4. If $U=\sqrt{3} X+Y$ and $V=X-\sqrt{3} Y$, then solving for X and Y gives

$$
X=\frac{\sqrt{3} U+V}{4} \quad \text { and } \quad Y=\frac{U-\sqrt{3} V}{4} .
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\sqrt{3} / 4 & 1 / 4 \\
1 / 4 & -\sqrt{3} / 4
\end{array}\right|=-1 / 4 .
$$

Therefore, we conclude

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}\left(\frac{\sqrt{3} u+v}{4}, \frac{u-\sqrt{3} v}{4}\right) \cdot|J| \\
& =\frac{1}{4} \cdot f_{X}\left(\frac{\sqrt{3} u+v}{4}\right) \cdot f_{Y}\left(\frac{u-\sqrt{3} v}{4}\right), \quad-\infty<u, v<\infty,
\end{aligned}
$$

using the assumed independence of X and Y. The exact form of f_{X} and f_{Y} gives

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{1}{4} \cdot \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{\sqrt{3} u+v}{4}\right)^{2}\right\} \cdot \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{u-\sqrt{3} v}{4}\right)^{2}\right\} \\
& =\frac{1}{8 \pi} \exp \left\{-\frac{1}{2 \cdot 16}\left(3 u^{2}+2 \sqrt{3} u v+v^{2}+u^{2}-2 \sqrt{3} u v+3 v^{2}\right)\right\} \\
& =\frac{1}{8 \pi} \exp \left\{-\frac{1}{2 \cdot 16}\left(4 u^{2}+4 v^{2}\right)\right\} \\
& =\frac{1}{2 \sqrt{2 \pi}} \exp \left\{-\frac{u^{2}}{2 \cdot 4}\right\} \cdot \frac{1}{2 \sqrt{2 \pi}} \exp \left\{-\frac{u^{2}}{2 \cdot 4}\right\}
\end{aligned}
$$

provided that $-\infty<u<\infty,-\infty<v<\infty$. Hence, we immediately conclude that $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$ and so U and V are independent random variables. Furthermore, we recognize that both U and V have a $N(0,4)$ density. Together, this implies that $U \mid V=v \in N(0,4)$.

