Statistics 351 Fall 2007 Midterm #1 — Solutions

1. (a) By definition,
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1. (b) Since fxy(z,y) # fx(x) - fy(y), we immediately conclude that X and Y are not
independent random variables.

1. (c) By definition,
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1. (d) By definition,
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Yy fyix=(y)dy = / y-eVdy.

Let u = y — x so that du = dy and the integral above becomes
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and so E(Y|X) =1+ X.
1. (e) Using (d) we find E(Y) =E(E(Y|X)) =E(1+ X) =1+ E(X). However,

E(X) = /Oo r- fx(z)dr = /OOO 2ze” % du.

o0

Let u = 2z so that du = 2dx and the integral above becomes
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Therefore,
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3. (a)

IfU=X+Y and V = X, then solving for X and Y gives
X=V and Y=U-V.

The Jacobian of this transformation is
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Therefore, we conclude
fov(u,v) = fxy W, u—v) - |J| =27~ . 1 =2¢7"
provided that 0 < 2v < u < oo (or, equivalently, 0 < v < § < 00). The marginal for

U is given by
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We recognize this as the density of a I'(2,1) random variable. That is, U = X +Y €
['(2,1) as required.
We find

E(Xpi1] X1, ., Xn) =E(X, - Y| Xq, ..., X5)
= X, E(Y,1]X1,...,X,) (by taking out what is known)
= X, E(Y,11) (since Y, is independent of Xi,..., X,)
=X, 1
=X,

and so {X,,,n =1,2,...} is, in fact, a martingale.
Forn=1,2,..., we find

E(Xn) =E(Y1- Y, Yo) = E(V1) - E(Y2) - - E(Y,) = 1
using the fact that Y7, Ys, ... are independent.

By the law of total probability,

and




3. (b) By definition,
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HU=vV3X+Y andV =X — \/gY, then solving for X and Y gives

X:M and y:U_T\/gv.

The Jacobian of this transformation is
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Therefore, we conclude
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using the assumed independence of X and Y. The exact form of fx and fy gives
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provided that —oo < u < 00, —00 < v < oo. Hence, we immediately conclude
that fuy(u,v) = fu(u) - fv(v) and so U and V' are independent random variables.
Furthermore, we recognize that both U and V have a N(0,4) density. Together, this
implies that U|V = v € N(0,4).
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