Statistics 351 Fall 2006 (Kozdron) Midterm \#1 - Solutions

1. (a) By definition, $f_{X \mid Y=y}(x)$ is given by

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} .
$$

We being by calculating

$$
f_{Y}(y)=\int_{0}^{\sqrt{4-y^{2}}} \frac{1}{\pi} d x=\frac{1}{\pi} \sqrt{4-y^{2}}
$$

for $0<y<2$. Therefore,

$$
f_{X \mid Y=y}(x)=\frac{\frac{1}{\pi}}{\frac{1}{\pi} \sqrt{4-y^{2}}}=\frac{1}{\sqrt{4-y^{2}}}, \quad 0<x<\sqrt{4-y^{2}} .
$$

1. (b) We find

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y=y}(x) d x=\int_{0}^{\sqrt{4-y^{2}}} x \cdot \frac{1}{\sqrt{4-y^{2}}} d x=\frac{1}{2} \frac{\left(\sqrt{4-y^{2}}\right)^{2}}{\sqrt{4-y^{2}}}=\frac{\sqrt{4-y^{2}}}{2} .
$$

1. (c) Solving for X and Y we find

$$
X=U \cos V \quad \text { and } \quad Y=U \sin V .
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\cos v & -u \sin v \\
\sin v & u \cos v
\end{array}\right|=u \cos ^{2} v+u \sin ^{2} v=u
$$

The joint density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u \cos v, u \sin v) \cdot|J|=\frac{u}{\pi}
$$

provided that $0<u<2$ and $0<v<\frac{\pi}{2}$.

1. (d) From (c), we see that U and V are independent since we can write $f_{U, V}(u, v)=$ $f_{U}(u) \cdot f_{V}(v)$ where $f_{U}(u)=\frac{u}{2}, 0<u<2$, and $f_{V}(v)=\frac{2}{\pi}, 0<v<\frac{\pi}{2}$.
2. By the law of total probability,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X \mid M=m}(x) f_{M}(m) d m
$$

Since $X \mid M=m \in U(0, m)$, we know that $f_{X \mid M=m}(x)=\frac{1}{m}, 0<x<m$. We also find that

$$
f_{M}(m)=F_{M}^{\prime}(m)=12 m^{2}-12 m^{3}=12 m^{2}(1-m), \quad 0<m<1
$$

Therefore,

$$
f_{X}(x)=\int_{x}^{1} \frac{1}{m} \cdot 12 m^{2}(1-m) d m=\left.\left(6 m^{2}-4 m^{3}\right)\right|_{x} ^{1}=2-6 x^{2}+4 x^{3}, \quad 0<x<1
$$

3. Notice that $P\left(X_{(1)}=X_{1}\right)=P\left(X_{1}<X_{2}\right)$. Therefore, by the law of total probability,

$$
P\left(X_{1}<X_{2}\right)=\int_{0}^{\infty} P\left(X_{2}>x \mid X_{1}=x\right) \cdot f_{X_{1}}(x) d x
$$

Since X_{1} and X_{2} are independent, we find

$$
P\left(X_{2}>x \mid X_{1}=x\right)=P\left(X_{2}>x\right)=\int_{x}^{\infty} 2 e^{-2 y} d y=e^{-2 x}
$$

Thus,

$$
P\left(X_{1}<X_{2}\right)=\int_{0}^{\infty} e^{-2 x} \cdot e^{-x} d x=-\left.\frac{1}{3} e^{-3 x}\right|_{0} ^{\infty}=\frac{1}{3}
$$

An alternative solution can be given by conditioning on the value of X_{2} instead. By the law of total probability,

$$
P\left(X_{1}<X_{2}\right)=\int_{0}^{\infty} P\left(X_{1}<x \mid X_{2}=x\right) \cdot f_{X_{2}}(x) d x
$$

Since X_{1} and X_{2} are independent, we find

$$
P\left(X_{1}<x \mid X_{2}=x\right)=P\left(X_{1}<x\right)=\int_{0}^{x} e^{-y} d y=1-e^{-x}
$$

Thus,

$$
P\left(X_{1}<X_{2}\right)=\int_{0}^{\infty}\left(1-e^{-x}\right) \cdot 2 e^{-2 x} d x=2\left[-\frac{1}{2} e^{-2 x}+\frac{1}{3} e^{-3 x}\right]_{0}^{\infty}=2\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{3} .
$$

4. (a) Notice that we can write $Z=Y \cdot X_{3}$, and that X_{3} is independent of Y. Therefore,

$$
\begin{aligned}
E(Z \mid Y) & =E\left(Y \cdot X_{3} \mid Y\right) \\
& =Y E\left(X_{3} \mid Y\right) \text { by "taking out what is known" } \\
& =Y E\left(X_{3}\right) \text { since } X_{3} \text { is independent of } Y \\
& =3 Y
\end{aligned}
$$

4. (b) Recalling that $\operatorname{cov}\left(X_{1}, X_{2}\right)=E\left(X_{1} \cdot X_{2}\right)-E\left(X_{1}\right) \cdot E\left(X_{2}\right)$, we find

$$
\begin{aligned}
E(Z)=E(E(Z \mid Y))=E(3 Y)=3 E(Y) & =3 E\left(X_{1} \cdot X_{2}\right) \\
& =3\left[\operatorname{cov}\left(X_{1}, X_{2}\right)+E\left(X_{1}\right) \cdot E\left(X_{2}\right)\right] \\
& =3[6+1 \cdot 2] \\
& =24 .
\end{aligned}
$$

