The following exercise illustrates that two random variables can have covariance zero yet need not be independent.

Exercise. Consider the random variable X defined by $P(X=-1)=1 / 4, P(X=0)=1 / 2$, $P(X=1)=1 / 4$. Let the random variable Y be defined as $Y:=X^{2}$. Hence, $P(Y=0 \mid X=0)=1$, $P(Y=1 \mid X=-1)=1, P(Y=1 \mid X=1)=1$.

- Show that the density of Y is $P(Y=0)=1 / 2, P(Y=1)=1 / 2$.
- Find the joint density of (X, Y), and show that X and Y are not independent.
- Find the density of $X Y$, compute $\mathbb{E}(X Y)$, and show that X and Y are uncorrelated.

Solution.

- We find the density of Y simply using the law of total probability:

$$
\begin{aligned}
& P(Y=0) \\
& \quad=P(Y=0 \mid X=1) P(X=1)+P(Y=0 \mid X=0) P(X=0)+P(Y=0 \mid X=-1) P(X=-1) \\
& \quad=0 \cdot 1 / 4+1 \cdot 1 / 2+0 \cdot 1 / 4 \\
& \quad=1 / 2, \\
& P(Y=1) \\
& \quad=P(Y=1 \mid X=1) P(X=1)+P(Y=1 \mid X=0) P(X=0)+P(Y=1 \mid X=-1) P(X=-1) \\
& \quad=1 \cdot 1 / 4+0 \cdot 1 / 2+1 \cdot 1 / 4 \\
& \quad=1 / 2 .
\end{aligned}
$$

- The joint density of (X, Y) is given by

$$
\begin{aligned}
& P(X=0, Y=0)=P(Y=0 \mid X=0) P(X=0)=1 \cdot 1 / 2=1 / 2 ; \\
& P(X=0, Y=1)=P(Y=1 \mid X=0) P(X=0)=0 \cdot 1 / 2=0 ; \\
& P(X=1, Y=0)=P(Y=0 \mid X=1) P(X=1)=0 \cdot 1 / 4=0 ; \\
& P(X=1, Y=1)=P(Y=1 \mid X=1) P(X=1)=1 \cdot 1 / 4=1 / 4 ; \\
& P(X=-1, Y=0)=P(Y=0 \mid X=-1) P(X=-1)=0 \cdot 1 / 4=0 ; \\
& P(X=-1, Y=1)=P(Y=1 \mid X=-1) P(X=-1)=1 \cdot 1 / 4=1 / 4 .
\end{aligned}
$$

Since, for example, $P(X=0, Y=0)=1 / 2$, but $P(X=0) P(Y=0)=1 / 2 \cdot 1 / 2=1 / 4$, we see that X and Y cannot be independent.

- The possible values of $X Y$ are $0,1,-1$. Hence,

$$
P(X Y=0)=P(X=0, Y=0)=1 / 2
$$

and

$$
P(X Y=1)=P(X=1, Y=1)=1 / 4
$$

using the computations above. By the law of total probability,

$$
P(X Y=-1)=1 / 4
$$

(Equivalently, $P(X Y=-1)=P(X=-1, Y=1)=1 / 4$.) Thus,

$$
\mathbb{E}(X Y)=0 \cdot P(X Y=0)+1 \cdot P(X Y=1)+(-1) \cdot P(X Y=-1)=0+1 / 4-1 / 4=0
$$

Since $\mathbb{E}(X)=0$ and $\mathbb{E}(Y)=0$, we see that

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=0-0=0
$$

whence X and Y are uncorrelated.

