Fisher's F-distribution and Statistical Hypothesis Testing
For Problem \#4 on page 27 you are asked to manipulate Fisher's F-distribution. The F-distribution arises in the following context. (See Section 10.9 in the Stat 251 textbook by Wackerly, et al.)

Let $Y_{1}, \ldots, Y_{n_{1}}$ be i.i.d. $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$, and let $X_{1}, \ldots, X_{n_{2}}$ be i.i.d. $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with both μ_{i} and σ_{i}^{2} unknown.

Suppose that we wish to test

$$
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad \text { vs. } \quad H_{A}: \sigma_{1}^{2}>\sigma_{2}^{2}
$$

The likelihood ratio test gives the rejection region as

$$
R R=\left\{\frac{S_{1}^{2}}{S_{2}^{2}}>k\right\}
$$

where k is a suitably chosen constant,

$$
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{j=1}^{n_{1}}\left(Y_{j}-\bar{Y}\right)^{2} \quad \text { with } \quad \bar{Y}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} Y_{j}
$$

and

$$
S_{2}^{2}=\frac{1}{n_{2}-1} \sum_{j=1}^{n_{2}}\left(X_{j}-\bar{X}\right)^{2} \quad \text { with } \quad \bar{X}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} X_{j}
$$

Fact. If

$$
Z_{1}=\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}} \quad \text { and } \quad Z_{2}=\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}}
$$

then Z_{1} and Z_{2} are independent random variables with $Z_{i} \in \chi^{2}\left(n_{i}\right)$.

If

$$
F=\frac{Z_{1} /\left(n_{1}-1\right)}{Z_{2} /\left(n_{2}-2\right)}=\frac{\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma_{1}^{2}\left(n_{1}-1\right)}}{\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma_{2}^{2}\left(n_{2}-1\right)}}=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{S_{1}^{2} \sigma_{2}^{2}}{S_{2}^{2} \sigma_{1}^{2}}
$$

then F has the F-distribution with $\left(n_{1}-1\right)$ numerator degrees-of-freedom and $\left(n_{2}-1\right)$ denominator degrees-of-freedom. This is written as $F \in F\left(n_{1}-1, n_{2}-1\right)$. Problem $\# 10$ on page 28 asks you to verify this fact.

