Statistics 351-Probability I
Fall 2006 (200630)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) Solving for X and Y gives X = UV and Y = V — UV, so that the Jacobian of this
transformation is

ox Oz
J u v v v VU +vu =
= = = UV — = .
9y Oy —v 1—u
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By Theorem 1.2.1, the joint density of (U, V)’ is therefore given by

fov(u,v) = fxy(uv,uwv —ww) - |J| = ((9_06_6 (uv)o‘fl (v— uv)ﬁf1 exp {_E} v

L'(a)'(B) 0
—a—f v
= F(eoz)F(ﬁ) uo‘_l(l — u)’g_lvo"w_1 exp {—5}
— F(O[ + ﬁ) o— — 9—04—5 a+6— v
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provided that 0 < u <1 and 0 < v < 0.

1. (b) We recognize that the joint density for U and V' can be factored as a product of the densities
for U and V, respectively. Thus,

F(Ox + ﬂ) uafl
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which we recognize as the density of a Beta(«, 3) random variable.

fo(u) = 1—uw)’' o0<u<1

2. (a) We see that fxy(z,y) > 0 for all z, y, and that

[e's} 00 1 T 1
/ / Ixy(z,y) de dy = / / 12¢% dy dx = / 423 dox = 2*
—o0 J —00 0o Jo 0

Thus, fxy is a legitimate density.
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2. (b) We compute

fX(x):/ Ixy(z,y) dy:/ 1292 dy =423, 0<z<1.
—0o0 0

2. (c¢) We compute

[e'e) 1
fy(y)z/ fX,y<x,y>dx:/ 120 do = 124%(1 —y), 0<y< L.
N ;

2. (d) We compute
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. (e) We compute

fxy(zy)  12y% 32
_ = 2 = = — 0 .
fY\sz(y) Fx(@) 13 23 <y<zw
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. (f) We compute
e 1 4
E(X) :/ xfx(z) de = / z -4z dr = 5
0

—00
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. (g) We compute

o0

T 3y? 3zt 3
Y|X =z) /OonyXa:(y) y /0 vy g dy= 5=

[\

. (h) Using properties of conditional expectation (Theorem II.2.1), we compute

E(Y)=E(E(Y|X))=E (ix) - 2E<X) - z : g - g

[\

. (i) Solution 1: Using properties of conditional expectation (Theorem I1.2.2) gives

E(XY) = B(E(XY|X)) = BE(X E(Y|X)) = E <X . ix) _ 2E(X2).

Since
2 R ! 2 4 2
E(X)Z/ :rfx(:c)d:cz/x-4x3dx:6:3,
o 0

we conclude ]
E(XY) = —.
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Solution 2: By definition,

o0 o0 1 T 1 T
E(XY)—/ / :ryfxy(ac,y)dxdy—/o /0 xy-12y2dydx—12/0 x/o y® dy dx
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so that Y = BX. By Theorem V.3.1, Y is MVN with mean

3. (a) Let

0
10 1 0
B“‘(o 2 0) 8 _<0>

and covariance matrix

1 0 -1 1 0
BAB’:<(1) *12 D 0o 2 -1 -2 1 :(12 3).
-1 -1 1 1 1



3. (b) Note that
det<12 _3> =12-9=3

-3 1
12 -3\ (i1
-3 1) —\1 4)

1 1 1/1
fviyva(y1,y2) = w exp {—2 <3y% + 2y192 + 4y§> } .

4. (a) We recognize fx(z,y) as the density function of a multivariate normal random variable with

mean
(0
=10

()

A:(‘; 3)
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4. (b) The characteristic function of X is

so that

Thus, we can conclude

and covariance matrix A where

Inverting this matrix gives

That is,

1
(px(tl,tg) = exp {—2(415% + 4t1to + Qt%)} .

4. (c) Recall that since X = (X,Y)’ is multivariate normal, the distribution of Y'|X = z is normal

with mean g, + p%(az — pz) and variance 05(1 — p?) where p = corr(X,Y). From (a), we know

thatuy:uxzo,ay:\/ﬁ,ax:2,andp:%§;y):2%/§:%. Therefore,
2
L NS S L 21— 2y —af1- (L)) =
,uy-l-pgx(x ,ug,;)—O—F\/5 2(:5 ())—2 and o (1-p°)=2(1 7 =

so that Y| X =2 € N(3,1).
5. By definition, fxy(z,y) = fy|x=2(y)fx(x) so that

frvloy) = —=e T e T = e =g (y- 0P +a) b= e {3 (202 - 2my 4 4?)
‘/L» [ 6 . e :7X _— —"E f :7X - 33 - :r
xX,y\x,y or o o p 9 Yy p 9 yTy

which we recognize as the density function of a multivariate normal random variable with mean

()
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and covariance matrix A where

Inverting this matrix gives

That is,

<XaY>’EN<<8> | G D)

Thus, we conclude that Y € N(0,2).

6. (a) In order to find the eigenvalues of A, we must find those values of A such that det(A—AI) = 0.
Therefore,

6-X =5

det(A—AI) = ( I

) =(6-N)2—25 =22 —12X+36—25 = A2~ 12X +11 = (A—11)(A—1)
so that the eigenvalues of A are \y = 11 and Xy = 1.

6. (b) Since \; =11,
-5 —5]0 1 1]0
(A_MIO)_<—5 —50>N<0 00>

5 —5]0 1 —1]0
= (5705 )~ (o 0lo)

we conclude that eigenvectors for A\; and Ay are

o= (1) m ()

respectively. Therefore, the diagonal matrix is

D = diag(\1, \2) = (01 /\2> B (0 1>

and the orthogonal matrix is

“= ( II:iH H:zll ) - (11/%5 5@

and since Ay = 1,

since [|va| = [[val] = V2.

6. (¢) If Y = C'X, then by Theorem V.3.1, Y is MVN with mean C’p and covariance matrix
C'AC" = C'"AC = D using our result from (b). Hence, we conclude

o)1)

6. (d) Since Y is multivariate normal we know from Definition I that ¥; and Y are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (c) we know that cov(Y7,Y2) = 0 so that Y; and Y are,
in fact, independent.



7. Observe that since fx y(z,y) =2z for 0 <2 < 1,0 <y < 1, we can immediately conclude that
X and Y are independent with fx(z) =2x,0 <z < 1, and fy(y) =1, 0 <y < 1. Therefore, using
the law of total probability,

P(X2<Y<X):/1P(x2<Y<m\X:x)fX(:c) dx:/lP(a;2<Y<x)fX(x) dx
0 0

since P(22 <Y < z|X =1z) = P(2? <Y < z) by the independence of X and Y. Now,

xT

P(ac2<Y<x)—/ fy(y)dy—/ ldy =z —2°
z? x?

so that
1 1 1 9 9 1
/ P(2? <Y < 2)fx(z) d$:/ (z — %) fx () dx:/ 2x(x —x?)der == —= ==
8. (a) Let U = % and V = m so that U = Xy and V = X. Solving for X(;y and
X(Q) we find

X(l) :V—U and X(g) :V+U
The Jacobian of this transformation is
7o ‘—1 1

1 1‘:_2'

Since
fX(1>,X(2) (yl:yQ) = 2' e_yle_y27 0 < yl < y2 < OO?
we find from Theorem 1.2.1 that the joint density of (U, V) is therefore given by

fov (W, v) = fxu) X (0= w0 +u)-[J] = 2! e (TWem (T g — e

provided that 0 < u < v < co. In other words, the joint density of the sample median X, and the
sample mean X is
fxyy x(wv) =4e7?, 0 <u<v< oo,

8. (b) The density of the sample median X, is given by

[e.9]
=2¢ 2
u

oo

fX]\/I (u) = / fX]u,Y(“? U) dv = / 42 dy = —2e %

provided that 0 < u < co. That is, X3 € Exp(1/2).

8. (c) The density of the sample mean X is given by

v v
Jx) = / fx,, x(u,v) du= / 4™ du = 4ve™?
0 ’ 0
provided that 0 < v < oo. That is, X € I'(2,1/2).

9. (a) Recall that since X = (X,Y’)’ is multivariate normal, the distribution of Y| X = z is normal
with mean p, +pg—z(az — 1) and variance 05(1 — p?) where p = corr(X,Y). Thus, since p1, = p1, = 0
and o, = o, = 1, we find that p = corr(X,Y) = cov(X,Y") and we conclude E(Y|X) = pX so that

cov(X, Y —E(Y|X)) =cov(X,Y —pX) =cov(X,Y) —pcov(X,X)=p—p-var(X) =p—p-1=0.
Hence, X and Y — E(Y|X) are uncorrelated.



9. (b) Since X = (X,Y) is multivariate normal, we know from Definition I that any linear combi-
nation of the components of X must be a one-dimensional normal. In particular, this means that
Y —pX =Y — E(Y|X) is normal. Since X is also normal, and since we know from Theorem V.7.1
that the components of a multivariate normal are uncorrelated if and only if they are independent,
we conclude that X and Y — E(Y|X) must be independent (since we showed in (a) that they are
uncorrelated).

10. (a) Since X4 € Po(4), we find

10. (b) Using the definition of conditional probability and the fact that increments of the Poisson
process are independent, we have

P(Xy=j,X3=1) P(Xy4—-Xz3=j-1,X3=1) PXy4—Xz3=j-1)P(X3=1)

= P(Xy— X3=j—1).
Since X4 — X3 € Po(1), we find
Ea o1
G-1

e = ji=12.
10. (c) Using the definition of conditional probability and the fact that increments of the Poisson

PXy=jlXs=1)=PXy—X3=j5-1)= - 5
(=1t
process are independent, we have

B L P(X1=0,X3=1) P(X3-X;=1X,=0) P(X3-X;=1)P(X; =0)
P(X1 = 01X =1) = ]13(X3:1) B P()1(3:1) : B P(1X3:1) '

Since X3 — X1 € Po(2), X3 € Po(3), and X; € Po(1), we find

1 0o _
2—62-%—!61 2

P(X;=0Xz=1)=1"-9%" =%

10. (d) By adding and subtracting X3, we compute
COV()(?,7 X4) = COV(‘ng7 X4 - X3 + Xg) = COV(_Xg7 X4 — Xg) + COV(Xg, Xg) =0+ Val"(Xg)

using the fact that the increments X, — X3 and X3 are independent. Since X3 € Po(3) we know
var(X3) = 3 so that
cov(Xs3, Xy) = var(X3) = 3.

10. (e) By adding and subtracting X, we compute
BE(X3|X1 =j) = B(Xs— X1+ X1[ Xy = j) = BE(X3 - X1| Xy = j)+ E(X1]| Xy = j) = BE(X3—X1)+]

where we have used the facts that F(X3 — X1|X; = j) = E(X3 — X3) since X3 — X7 and X3
are independent, and E(X1|X; = j) = j by “taking out what is known.” (See Theorems I1.2.1
and I1.2.2.) Since X3 — X; € Po(2) we know E(X3 — X;) = 2 so that

E(Xg‘Xl :j)ZQ—I-j, 7=0,1,2,....



11. (a) Let Ty denote the time after waking at which Keith lights his 8th cigarette. Since Ty €
I'(8,1), we conclude

' q
1
E(T3)=8--=2
4
so that he is expected to light his 8th cigarette at noon, namely 2 hours after 10:00 a.m.
11. (b) The probability that he lights 3 cigarettes or more between noon and 1:00 p.m. is

P(Xg—XQZ3):1—P(X3—X2<3)
=1-P(X3—X3=0)— P(X3— Xo=1) — P(X3 — X5 = 2)

since X3 — Xy € Po(4).



