
Statistics 351–Probability I
Fall 2006 (200630)

Final Exam Solutions

Instructor: Michael Kozdron

1. (a) Solving for X and Y gives X = UV and Y = V − UV , so that the Jacobian of this
transformation is

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ v u
−v 1− u

∣∣∣∣ = v − vu + vu = v.

By Theorem I.2.1, the joint density of (U, V )′ is therefore given by

fU,V (u, v) = fX,Y (uv, uv − uv) · |J | = θ−α−β

Γ(α)Γ(β)
(uv)α−1 (v − uv)β−1 exp

{
−v

θ

}
v

=
θ−α−β

Γ(α)Γ(β)
uα−1(1− u)β−1vα+β−1 exp

{
−v

θ

}
=

Γ(α + β)
Γ(α)Γ(β)

uα−1(1− u)β−1 · θ−α−β

Γ(α + β)
vα+β−1 exp

{
−v

θ

}
provided that 0 < u < 1 and 0 < v < ∞.

1. (b) We recognize that the joint density for U and V can be factored as a product of the densities
for U and V , respectively. Thus,

fU (u) =
Γ(α + β)
Γ(α)Γ(β)

uα−1(1− u)β−1, 0 < u < 1

which we recognize as the density of a Beta(α, β) random variable.

2. (a) We see that fX,Y (x, y) ≥ 0 for all x, y, and that∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy =

∫ 1

0

∫ x

0
12y2 dy dx =

∫ 1

0
4x3 dx = x4

∣∣∣∣1
0

= 1.

Thus, fX,Y is a legitimate density.

2. (b) We compute

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ x

0
12y2 dy = 4x3, 0 < x < 1.

2. (c) We compute

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ 1

y
12y2 dx = 12y2(1− y), 0 < y < 1.

2. (d) We compute

fX|Y =y(x) =
fX,Y (x, y)

fY (y)
=

12y2

12y2(1− y)
=

1
1− y

, y < x < 1.



2. (e) We compute

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

12y2

4x3
=

3y2

x3
, 0 < y < x.

2. (f) We compute

E(X) =
∫ ∞

−∞
xfX(x) dx =

∫ 1

0
x · 4x3 dx =

4
5
.

2. (g) We compute

E(Y |X = x) =
∫ ∞

−∞
yfY |X=x(y) dy =

∫ x

0
y · 3y2

x3
dy =

3x4

4x3
=

3
4
x.

2. (h) Using properties of conditional expectation (Theorem II.2.1), we compute

E(Y ) = E( E(Y |X) ) = E

(
3
4
X

)
=

3
4
E(X) =

3
4
· 4
5

=
3
5
.

2. (i) Solution 1: Using properties of conditional expectation (Theorem II.2.2) gives

E(XY ) = E( E(XY |X) ) = E(X E(Y |X) ) = E

(
X · 3

4
X

)
=

3
4
E(X2).

Since

E(X2) =
∫ ∞

−∞
x2fX(x) dx =

∫ 1

0
x2 · 4x3 dx =

4
6

=
2
3
,

we conclude
E(XY ) =

3
4
· 2
3

=
1
2
.

Solution 2: By definition,

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xyfX,Y (x, y) dx dy =

∫ 1

0

∫ x

0
xy · 12y2 dy dx = 12

∫ 1

0
x

∫ x

0
y3 dy dx

= 12
∫ 1

0
x · 1

4
x4 dx = 3

∫ 1

0
x5 dx =

3
6

=
1
2
.

3. (a) Let

B =
(

1 −2 1
0 1 1

)
so that Y = BX. By Theorem V.3.1, Y is MVN with mean

Bµµµ =
(

1 0 1
0 2 0

)0
0
0

 =
(

0
0

)

and covariance matrix

BΛΛΛB′ =
(

1 −2 1
0 1 1

) 1 0 −1
0 2 −1
−1 −1 1

 1 0
−2 1
1 1

 =
(

12 −3
−3 1

)
.



3. (b) Note that

det
(

12 −3
−3 1

)
= 12− 9 = 3

so that (
12 −3
−3 1

)−1

=
(

1
3 1
1 4

)
.

Thus, we can conclude

fY1,Y2(y1, y2) =
1
2π

· 1√
3

exp
{
−1

2

(
1
3
y2
1 + 2y1y2 + 4y2

2

)}
.

4. (a) We recognize fX(x, y) as the density function of a multivariate normal random variable with
mean

µµµ =
(

0
0

)
and covariance matrix ΛΛΛ where

ΛΛΛ−1 =
(

1/2 −1/2
−1/2 1

)
.

Inverting this matrix gives

ΛΛΛ =
(

4 2
2 2

)
.

That is,

X ∈ N

((
0
0

)
,

(
4 2
2 2

))
.

4. (b) The characteristic function of X is

ϕX(t1, t2) = exp
{
−1

2
(4t21 + 4t1t2 + 2t22)

}
.

4. (c) Recall that since X = (X, Y )′ is multivariate normal, the distribution of Y |X = x is normal
with mean µy + ρ

σy

σx
(x − µx) and variance σ2

y(1 − ρ2) where ρ = corr(X, Y ). From (a), we know

that µy = µx = 0, σy =
√

2, σx = 2, and ρ = cov(X,Y )
σxσy

= 2
2
√

2
= 1√

2
. Therefore,

µy + ρ
σy

σx
(x− µx) = 0 +

1√
2
·
√

2
2

(x− 0) =
x

2
and σ2

y(1− ρ2) = 2

(
1−

(
1√
2

)2
)

= 1

so that Y |X = x ∈ N(x
2 , 1).

5. By definition, fX,Y (x, y) = fY |X=x(y)fX(x) so that

fX,Y (x, y) =
1√
2π

e−
(y−x)2

2 · 1√
2π

e−
x2

2 =
1
2π

exp
{
−1

2
(
(y − x)2 + x2

)}
=

1
2π

exp
{
−1

2
(
2x2 − 2xy + y2

)}
which we recognize as the density function of a multivariate normal random variable with mean

µµµ =
(

0
0

)
(continued)



and covariance matrix ΛΛΛ where

ΛΛΛ−1 =
(

2 −1
−1 1

)
.

Inverting this matrix gives

ΛΛΛ =
(

1 1
1 2

)
.

That is,

(X, Y )′ ∈ N

((
0
0

)
,

(
1 1
1 2

))
.

Thus, we conclude that Y ∈ N(0, 2).

6. (a) In order to find the eigenvalues of ΛΛΛ, we must find those values of λ such that det(ΛΛΛ−λI) = 0.
Therefore,

det(ΛΛΛ−λI) =
(

6− λ −5
−5 6− λ

)
= (6−λ)2−25 = λ2−12λ+36−25 = λ2−12λ+11 = (λ−11)(λ−1)

so that the eigenvalues of ΛΛΛ are λ1 = 11 and λ2 = 1.

6. (b) Since λ1 = 11,

(ΛΛΛ− λ1I | 0) =
(
−5 −5 0
−5 −5 0

)
∼
(

1 1 0
0 0 0

)
and since λ2 = 1,

(ΛΛΛ− λ2I | 0) =
(

5 −5 0
−5 5 0

)
∼
(

1 −1 0
0 0 0

)
we conclude that eigenvectors for λ1 and λ2 are

v1 =
(
−1
1

)
and v2 =

(
1
1

)
respectively. Therefore, the diagonal matrix is

D = diag(λ1, λ2) =
(

λ1 0
0 λ2

)
=
(

11 0
0 1

)
and the orthogonal matrix is

C =
(

v1

||v1||
v2

||v2||

)
=
(
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

)
since ||v1|| = ||v2|| =

√
2.

6. (c) If Y = C ′X, then by Theorem V.3.1, Y is MVN with mean C ′µµµ and covariance matrix
C ′ΛΛΛC ′′ = C ′ΛΛΛC = D using our result from (b). Hence, we conclude

Y ∈ N

((
0
0

)
,

(
11 0
0 1

))
.

6. (d) Since Y is multivariate normal we know from Definition I that Y1 and Y2 are each one-
dimensional normals. We also know from Theorem V.7.1 that the components of Y are independent
if and only if they are uncorrelated. From (c) we know that cov(Y1, Y2) = 0 so that Y1 and Y2 are,
in fact, independent.



7. Observe that since fX,Y (x, y) = 2x for 0 < x < 1, 0 < y < 1, we can immediately conclude that
X and Y are independent with fX(x) = 2x, 0 < x < 1, and fY (y) = 1, 0 < y < 1. Therefore, using
the law of total probability,

P (X2 < Y < X) =
∫ 1

0
P (x2 < Y < x|X = x)fX(x) dx =

∫ 1

0
P (x2 < Y < x)fX(x) dx

since P (x2 < Y < x|X = x) = P (x2 < Y < x) by the independence of X and Y . Now,

P (x2 < Y < x) =
∫ x

x2

fY (y) dy =
∫ x

x2

1 dy = x− x2

so that∫ 1

0
P (x2 < Y < x)fX(x) dx =

∫ 1

0
(x− x2)fX(x) dx =

∫ 1

0
2x(x− x2) dx =

2
3
− 2

4
=

1
6
.

8. (a) Let U = X(2)−X(1)

2 and V = X(2)+X(1)

2 so that U = XM and V = X. Solving for X(1) and
X(2) we find

X(1) = V − U and X(2) = V + U.

The Jacobian of this transformation is

J =
∣∣∣∣−1 1

1 1

∣∣∣∣ = −2.

Since
fX(1),X(2)

(y1, y2) = 2! e−y1e−y2 , 0 < y1 < y2 < ∞,

we find from Theorem I.2.1 that the joint density of (U, V ) is therefore given by

fU,V (u, v) = fX(1),X(2)
(v − u, v + u) · |J | = 2! e−(v−u)e−(v+u) · 2 = 4e−2v

provided that 0 < u < v < ∞. In other words, the joint density of the sample median XM and the
sample mean X is

fXM ,X(u, v) = 4e−2v, 0 < u < v < ∞.

8. (b) The density of the sample median XM is given by

fXM
(u) =

∫ ∞

u
fXM ,X(u, v) dv =

∫ ∞

u
4e−2v dv = −2e−2v

∣∣∣∣∞
u

= 2e−2u

provided that 0 < u < ∞. That is, XM ∈ Exp(1/2).

8. (c) The density of the sample mean X is given by

fX(v) =
∫ v

0
fXM ,X(u, v) du =

∫ v

0
4e−2v du = 4ve−2v

provided that 0 < v < ∞. That is, X ∈ Γ(2, 1/2).

9. (a) Recall that since X = (X, Y )′ is multivariate normal, the distribution of Y |X = x is normal
with mean µy +ρ

σy

σx
(x−µx) and variance σ2

y(1−ρ2) where ρ = corr(X, Y ). Thus, since µx = µy = 0
and σx = σy = 1, we find that ρ = corr(X, Y ) = cov(X, Y ) and we conclude E(Y |X) = ρX so that

cov(X, Y −E(Y |X)) = cov(X, Y − ρX) = cov(X, Y )− ρ cov(X, X) = ρ− ρ · var(X) = ρ− ρ · 1 = 0.

Hence, X and Y − E(Y |X) are uncorrelated.



9. (b) Since X = (X, Y )′ is multivariate normal, we know from Definition I that any linear combi-
nation of the components of X must be a one-dimensional normal. In particular, this means that
Y − ρX = Y −E(Y |X) is normal. Since X is also normal, and since we know from Theorem V.7.1
that the components of a multivariate normal are uncorrelated if and only if they are independent,
we conclude that X and Y − E(Y |X) must be independent (since we showed in (a) that they are
uncorrelated).

10. (a) Since X4 ∈ Po(4), we find

P (X4 = j) =
4j

j!
e−4, j = 1, 2.

10. (b) Using the definition of conditional probability and the fact that increments of the Poisson
process are independent, we have

P (X4 = j|X3 = 1) =
P (X4 = j, X3 = 1)

P (X3 = 1)
=

P (X4 −X3 = j − 1, X3 = 1)
P (X3 = 1)

=
P (X4 −X3 = j − 1)P (X3 = 1)

P (X3 = 1)
= P (X4 −X3 = j − 1).

Since X4 −X3 ∈ Po(1), we find

P (X4 = j|X3 = 1) = P (X4 −X3 = j − 1) =
1j−1

(j − 1)!
e−1 =

e−1

(j − 1)!
, j = 1, 2.

10. (c) Using the definition of conditional probability and the fact that increments of the Poisson
process are independent, we have

P (X1 = 0|X3 = 1) =
P (X1 = 0, X3 = 1)

P (X3 = 1)
=

P (X3 −X1 = 1, X1 = 0)
P (X3 = 1)

=
P (X3 −X1 = 1)P (X1 = 0)

P (X3 = 1)
.

Since X3 −X1 ∈ Po(2), X3 ∈ Po(3), and X1 ∈ Po(1), we find

P (X1 = 0|X3 = 1) =
21

1! e
−2 · 10

0! e
−1

31

1! e
−3

=
2
3
.

10. (d) By adding and subtracting X3, we compute

cov(X3, X4) = cov(X3, X4 −X3 + X3) = cov(X3, X4 −X3) + cov(X3, X3) = 0 + var(X3)

using the fact that the increments X4 −X3 and X3 are independent. Since X3 ∈ Po(3) we know
var(X3) = 3 so that

cov(X3, X4) = var(X3) = 3.

10. (e) By adding and subtracting X1, we compute

E(X3|X1 = j) = E(X3−X1+X1|X1 = j) = E(X3−X1|X1 = j)+E(X1|X1 = j) = E(X3−X1)+j

where we have used the facts that E(X3 − X1|X1 = j) = E(X3 − X1) since X3 − X1 and X1

are independent, and E(X1|X1 = j) = j by “taking out what is known.” (See Theorems II.2.1
and II.2.2.) Since X3 −X1 ∈ Po(2) we know E(X3 −X1) = 2 so that

E(X3|X1 = j) = 2 + j, j = 0, 1, 2, . . . .



11. (a) Let T8 denote the time after waking at which Keith lights his 8th cigarette. Since T8 ∈
Γ(8, 1

4), we conclude

E(T8) = 8 · 1
4

= 2

so that he is expected to light his 8th cigarette at noon, namely 2 hours after 10:00 a.m.

11. (b) The probability that he lights 3 cigarettes or more between noon and 1:00 p.m. is

P (X3 −X2 ≥ 3) = 1− P (X3 −X2 < 3)
= 1− P (X3 −X2 = 0)− P (X3 −X2 = 1)− P (X3 −X2 = 2)

= 1− 40

0!
e−4 − 41

1!
e−4 − 42

2!
e−4

= 1− 13e−4

since X3 −X2 ∈ Po(4).


