Statistics 351-Probability I

Fall 2006 (200630)
Final Exam Solutions

Instructor: Michael Kozdron

1. (a) Solving for X and Y gives $X=U V$ and $Y=V-U V$, so that the Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
-v & 1-u
\end{array}\right|=v-v u+v u=v .
$$

By Theorem I.2.1, the joint density of $(U, V)^{\prime}$ is therefore given by

$$
\begin{aligned}
f_{U, V}(u, v)=f_{X, Y}(u v, u v-u v) \cdot|J| & =\frac{\theta^{-\alpha-\beta}}{\Gamma(\alpha) \Gamma(\beta)}(u v)^{\alpha-1}(v-u v)^{\beta-1} \exp \left\{-\frac{v}{\theta}\right\} v \\
& =\frac{\theta^{-\alpha-\beta}}{\Gamma(\alpha) \Gamma(\beta)} u^{\alpha-1}(1-u)^{\beta-1} v^{\alpha+\beta-1} \exp \left\{-\frac{v}{\theta}\right\} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} u^{\alpha-1}(1-u)^{\beta-1} \cdot \frac{\theta^{-\alpha-\beta}}{\Gamma(\alpha+\beta)} v^{\alpha+\beta-1} \exp \left\{-\frac{v}{\theta}\right\}
\end{aligned}
$$

provided that $0<u<1$ and $0<v<\infty$.

1. (b) We recognize that the joint density for U and V can be factored as a product of the densities for U and V, respectively. Thus,

$$
f_{U}(u)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} u^{\alpha-1}(1-u)^{\beta-1}, \quad 0<u<1
$$

which we recognize as the density of a $\operatorname{Beta}(\alpha, \beta)$ random variable.
2. (a) We see that $f_{X, Y}(x, y) \geq 0$ for all x, y, and that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{x} 12 y^{2} d y d x=\int_{0}^{1} 4 x^{3} d x=\left.x^{4}\right|_{0} ^{1}=1
$$

Thus, $f_{X, Y}$ is a legitimate density.
2. (b) We compute

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y=\int_{0}^{x} 12 y^{2} d y=4 x^{3}, \quad 0<x<1
$$

2. (c) We compute

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{y}^{1} 12 y^{2} d x=12 y^{2}(1-y), \quad 0<y<1
$$

2. (d) We compute

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{12 y^{2}}{12 y^{2}(1-y)}=\frac{1}{1-y}, \quad y<x<1
$$

2. (e) We compute

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{12 y^{2}}{4 x^{3}}=\frac{3 y^{2}}{x^{3}}, \quad 0<y<x .
$$

2. (f) We compute

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x \cdot 4 x^{3} d x=\frac{4}{5} .
$$

2. (g) We compute

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X=x}(y) d y=\int_{0}^{x} y \cdot \frac{3 y^{2}}{x^{3}} d y=\frac{3 x^{4}}{4 x^{3}}=\frac{3}{4} x .
$$

2. (h) Using properties of conditional expectation (Theorem II.2.1), we compute

$$
E(Y)=E(E(Y \mid X))=E\left(\frac{3}{4} X\right)=\frac{3}{4} E(X)=\frac{3}{4} \cdot \frac{4}{5}=\frac{3}{5} .
$$

2. (i) Solution 1: Using properties of conditional expectation (Theorem II.2.2) gives

$$
E(X Y)=E(E(X Y \mid X))=E(X E(Y \mid X))=E\left(X \cdot \frac{3}{4} X\right)=\frac{3}{4} E\left(X^{2}\right) .
$$

Since

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{2} \cdot 4 x^{3} d x=\frac{4}{6}=\frac{2}{3},
$$

we conclude

$$
E(X Y)=\frac{3}{4} \cdot \frac{2}{3}=\frac{1}{2} .
$$

Solution 2: By definition,

$$
\begin{aligned}
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y & =\int_{0}^{1} \int_{0}^{x} x y \cdot 12 y^{2} d y d x=12 \int_{0}^{1} x \int_{0}^{x} y^{3} d y d x \\
& =12 \int_{0}^{1} x \cdot \frac{1}{4} x^{4} d x=3 \int_{0}^{1} x^{5} d x=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

3. (a) Let

$$
B=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem V.3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\binom{0}{0}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
12 & -3 \\
-3 & 1
\end{array}\right) .
$$

3. (b) Note that

$$
\operatorname{det}\left(\begin{array}{cc}
12 & -3 \\
-3 & 1
\end{array}\right)=12-9=3
$$

so that

$$
\left(\begin{array}{cc}
12 & -3 \\
-3 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{3} & 1 \\
1 & 4
\end{array}\right)
$$

Thus, we can conclude

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi} \cdot \frac{1}{\sqrt{3}} \exp \left\{-\frac{1}{2}\left(\frac{1}{3} y_{1}^{2}+2 y_{1} y_{2}+4 y_{2}^{2}\right)\right\}
$$

4. (a) We recognize $f_{\mathbf{X}}(x, y)$ as the density function of a multivariate normal random variable with mean

$$
\boldsymbol{\mu}=\binom{0}{0}
$$

and covariance matrix $\boldsymbol{\Lambda}$ where

$$
\Lambda^{-1}=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1
\end{array}\right)
$$

Inverting this matrix gives

$$
\boldsymbol{\Lambda}=\left(\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right)
$$

That is,

$$
\mathbf{X} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
4 & 2 \\
2 & 2
\end{array}\right)\right)
$$

4. (b) The characteristic function of \mathbf{X} is

$$
\varphi_{\mathbf{X}}\left(t_{1}, t_{2}\right)=\exp \left\{-\frac{1}{2}\left(4 t_{1}^{2}+4 t_{1} t_{2}+2 t_{2}^{2}\right)\right\}
$$

4. (c) Recall that since $\mathbf{X}=(X, Y)^{\prime}$ is multivariate normal, the distribution of $Y \mid X=x$ is normal with mean $\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)$ and variance $\sigma_{y}^{2}\left(1-\rho^{2}\right)$ where $\rho=\operatorname{corr}(X, Y)$. From (a), we know that $\mu_{y}=\mu_{x}=0, \sigma_{y}=\sqrt{2}, \sigma_{x}=2$, and $\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{x} \sigma_{y}}=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}$. Therefore,

$$
\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)=0+\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2}(x-0)=\frac{x}{2} \quad \text { and } \quad \sigma_{y}^{2}\left(1-\rho^{2}\right)=2\left(1-\left(\frac{1}{\sqrt{2}}\right)^{2}\right)=1
$$

so that $Y \left\lvert\, X=x \in N\left(\frac{x}{2}, 1\right)\right.$.
5. By definition, $f_{X, Y}(x, y)=f_{Y \mid X=x}(y) f_{X}(x)$ so that
$f_{X, Y}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-x)^{2}}{2}} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left((y-x)^{2}+x^{2}\right)\right\}=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(2 x^{2}-2 x y+y^{2}\right)\right\}$
which we recognize as the density function of a multivariate normal random variable with mean

$$
\boldsymbol{\mu}=\binom{0}{0}
$$

and covariance matrix $\boldsymbol{\Lambda}$ where

$$
\Lambda^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

Inverting this matrix gives

$$
\boldsymbol{\Lambda}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

That is,

$$
(X, Y)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\right) .
$$

Thus, we conclude that $Y \in N(0,2)$.
6. (a) In order to find the eigenvalues of $\boldsymbol{\Lambda}$, we must find those values of λ such that $\operatorname{det}(\boldsymbol{\Lambda}-\lambda I)=0$. Therefore,
$\operatorname{det}(\boldsymbol{\Lambda}-\lambda I)=\left(\begin{array}{cc}6-\lambda & -5 \\ -5 & 6-\lambda\end{array}\right)=(6-\lambda)^{2}-25=\lambda^{2}-12 \lambda+36-25=\lambda^{2}-12 \lambda+11=(\lambda-11)(\lambda-1)$
so that the eigenvalues of $\boldsymbol{\Lambda}$ are $\lambda_{1}=11$ and $\lambda_{2}=1$.
6. (b) Since $\lambda_{1}=11$,

$$
\left(\boldsymbol{\Lambda}-\lambda_{1} I \mid 0\right)=\left(\begin{array}{ll|l}
-5 & -5 & 0 \\
-5 & -5 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and since $\lambda_{2}=1$,

$$
\left(\boldsymbol{\Lambda}-\lambda_{2} I \mid 0\right)=\left(\begin{array}{cc|c}
5 & -5 & 0 \\
-5 & 5 & 0
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

we conclude that eigenvectors for λ_{1} and λ_{2} are

$$
\mathbf{v}_{1}=\binom{-1}{1} \quad \text { and } \quad \mathbf{v}_{2}=\binom{1}{1}
$$

respectively. Therefore, the diagonal matrix is

$$
D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)=\left(\begin{array}{cc}
11 & 0 \\
0 & 1
\end{array}\right)
$$

and the orthogonal matrix is

$$
C=\left(\begin{array}{ll}
\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}
\end{array}\right)=\left(\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

since $\left\|\mathbf{v}_{1}\right\|=\left\|\mathbf{v}_{2}\right\|=\sqrt{2}$.
6. (c) If $\mathbf{Y}=C^{\prime} \mathbf{X}$, then by Theorem V.3.1, \mathbf{Y} is MVN with mean $C^{\prime} \boldsymbol{\mu}$ and covariance matrix $C^{\prime} \boldsymbol{\Lambda} C^{\prime \prime}=C^{\prime} \boldsymbol{\Lambda} C=D$ using our result from (b). Hence, we conclude

$$
\mathbf{Y} \in N\left(\binom{0}{0},\left(\begin{array}{cc}
11 & 0 \\
0 & 1
\end{array}\right)\right) .
$$

6. (d) Since \mathbf{Y} is multivariate normal we know from Definition I that Y_{1} and Y_{2} are each onedimensional normals. We also know from Theorem V.7.1 that the components of \mathbf{Y} are independent if and only if they are uncorrelated. From (c) we know that $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=0$ so that Y_{1} and Y_{2} are, in fact, independent.
7. Observe that since $f_{X, Y}(x, y)=2 x$ for $0<x<1,0<y<1$, we can immediately conclude that X and Y are independent with $f_{X}(x)=2 x, 0<x<1$, and $f_{Y}(y)=1,0<y<1$. Therefore, using the law of total probability,

$$
P\left(X^{2}<Y<X\right)=\int_{0}^{1} P\left(x^{2}<Y<x \mid X=x\right) f_{X}(x) d x=\int_{0}^{1} P\left(x^{2}<Y<x\right) f_{X}(x) d x
$$

since $P\left(x^{2}<Y<x \mid X=x\right)=P\left(x^{2}<Y<x\right)$ by the independence of X and Y. Now,

$$
P\left(x^{2}<Y<x\right)=\int_{x^{2}}^{x} f_{Y}(y) d y=\int_{x^{2}}^{x} 1 d y=x-x^{2}
$$

so that

$$
\int_{0}^{1} P\left(x^{2}<Y<x\right) f_{X}(x) d x=\int_{0}^{1}\left(x-x^{2}\right) f_{X}(x) d x=\int_{0}^{1} 2 x\left(x-x^{2}\right) d x=\frac{2}{3}-\frac{2}{4}=\frac{1}{6}
$$

8. (a) Let $U=\frac{X_{(2)}-X_{(1)}}{2}$ and $V=\frac{X_{(2)}+X_{(1)}}{2}$ so that $U=X_{M}$ and $V=\bar{X}$. Solving for $X_{(1)}$ and $X_{(2)}$ we find

$$
X_{(1)}=V-U \quad \text { and } \quad X_{(2)}=V+U
$$

The Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=-2
$$

Since

$$
f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right)=2!e^{-y_{1}} e^{-y_{2}}, \quad 0<y_{1}<y_{2}<\infty
$$

we find from Theorem I.2.1 that the joint density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X_{(1)}, X_{(2)}}(v-u, v+u) \cdot|J|=2!e^{-(v-u)} e^{-(v+u)} \cdot 2=4 e^{-2 v}
$$

provided that $0<u<v<\infty$. In other words, the joint density of the sample median X_{M} and the sample mean \bar{X} is

$$
f_{X_{M}, \bar{X}}(u, v)=4 e^{-2 v}, \quad 0<u<v<\infty
$$

8. (b) The density of the sample median X_{M} is given by

$$
f_{X_{M}}(u)=\int_{u}^{\infty} f_{X_{M}, \bar{X}}(u, v) d v=\int_{u}^{\infty} 4 e^{-2 v} d v=-\left.2 e^{-2 v}\right|_{u} ^{\infty}=2 e^{-2 u}
$$

provided that $0<u<\infty$. That is, $X_{M} \in \operatorname{Exp}(1 / 2)$.
8. (c) The density of the sample mean \bar{X} is given by

$$
f_{\bar{X}}(v)=\int_{0}^{v} f_{X_{M}, \bar{X}}(u, v) d u=\int_{0}^{v} 4 e^{-2 v} d u=4 v e^{-2 v}
$$

provided that $0<v<\infty$. That is, $\bar{X} \in \Gamma(2,1 / 2)$.
9. (a) Recall that since $\mathbf{X}=(X, Y)^{\prime}$ is multivariate normal, the distribution of $Y \mid X=x$ is normal with mean $\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)$ and variance $\sigma_{y}^{2}\left(1-\rho^{2}\right)$ where $\rho=\operatorname{corr}(X, Y)$. Thus, since $\mu_{x}=\mu_{y}=0$ and $\sigma_{x}=\sigma_{y}=1$, we find that $\rho=\operatorname{corr}(X, Y)=\operatorname{cov}(X, Y)$ and we conclude $E(Y \mid X)=\rho X$ so that $\operatorname{cov}(X, Y-E(Y \mid X))=\operatorname{cov}(X, Y-\rho X)=\operatorname{cov}(X, Y)-\rho \operatorname{cov}(X, X)=\rho-\rho \cdot \operatorname{var}(X)=\rho-\rho \cdot 1=0$.

Hence, X and $Y-E(Y \mid X)$ are uncorrelated.
9. (b) Since $\mathbf{X}=(X, Y)^{\prime}$ is multivariate normal, we know from Definition I that any linear combination of the components of \mathbf{X} must be a one-dimensional normal. In particular, this means that $Y-\rho X=Y-E(Y \mid X)$ is normal. Since X is also normal, and since we know from Theorem V.7.1 that the components of a multivariate normal are uncorrelated if and only if they are independent, we conclude that X and $Y-E(Y \mid X)$ must be independent (since we showed in (a) that they are uncorrelated).
10. (a) Since $X_{4} \in \operatorname{Po}(4)$, we find

$$
P\left(X_{4}=j\right)=\frac{4^{j}}{j!} e^{-4}, \quad j=1,2
$$

10. (b) Using the definition of conditional probability and the fact that increments of the Poisson process are independent, we have
$P\left(X_{4}=j \mid X_{3}=1\right)=\frac{P\left(X_{4}=j, X_{3}=1\right)}{P\left(X_{3}=1\right)}=\frac{P\left(X_{4}-X_{3}=j-1, X_{3}=1\right)}{P\left(X_{3}=1\right)}=\frac{P\left(X_{4}-X_{3}=j-1\right) P\left(X_{3}=1\right)}{P\left(X_{3}=1\right)}$ $=P\left(X_{4}-X_{3}=j-1\right)$.

Since $X_{4}-X_{3} \in \operatorname{Po}(1)$, we find

$$
P\left(X_{4}=j \mid X_{3}=1\right)=P\left(X_{4}-X_{3}=j-1\right)=\frac{1^{j-1}}{(j-1)!} e^{-1}=\frac{e^{-1}}{(j-1)!}, \quad j=1,2
$$

10. (c) Using the definition of conditional probability and the fact that increments of the Poisson process are independent, we have
$P\left(X_{1}=0 \mid X_{3}=1\right)=\frac{P\left(X_{1}=0, X_{3}=1\right)}{P\left(X_{3}=1\right)}=\frac{P\left(X_{3}-X_{1}=1, X_{1}=0\right)}{P\left(X_{3}=1\right)}=\frac{P\left(X_{3}-X_{1}=1\right) P\left(X_{1}=0\right)}{P\left(X_{3}=1\right)}$.
Since $X_{3}-X_{1} \in \operatorname{Po}(2), X_{3} \in \operatorname{Po}(3)$, and $X_{1} \in \operatorname{Po}(1)$, we find

$$
P\left(X_{1}=0 \mid X_{3}=1\right)=\frac{\frac{2^{1}}{1!} e^{-2} \cdot \frac{1^{0}}{0!} e^{-1}}{\frac{3^{1}}{1!} e^{-3}}=\frac{2}{3}
$$

10. (d) By adding and subtracting X_{3}, we compute

$$
\operatorname{cov}\left(X_{3}, X_{4}\right)=\operatorname{cov}\left(X_{3}, X_{4}-X_{3}+X_{3}\right)=\operatorname{cov}\left(X_{3}, X_{4}-X_{3}\right)+\operatorname{cov}\left(X_{3}, X_{3}\right)=0+\operatorname{var}\left(X_{3}\right)
$$

using the fact that the increments $X_{4}-X_{3}$ and X_{3} are independent. Since $X_{3} \in \operatorname{Po}(3)$ we know $\operatorname{var}\left(X_{3}\right)=3$ so that

$$
\operatorname{cov}\left(X_{3}, X_{4}\right)=\operatorname{var}\left(X_{3}\right)=3
$$

10. (e) By adding and subtracting X_{1}, we compute

$$
E\left(X_{3} \mid X_{1}=j\right)=E\left(X_{3}-X_{1}+X_{1} \mid X_{1}=j\right)=E\left(X_{3}-X_{1} \mid X_{1}=j\right)+E\left(X_{1} \mid X_{1}=j\right)=E\left(X_{3}-X_{1}\right)+j
$$

where we have used the facts that $E\left(X_{3}-X_{1} \mid X_{1}=j\right)=E\left(X_{3}-X_{1}\right)$ since $X_{3}-X_{1}$ and X_{1} are independent, and $E\left(X_{1} \mid X_{1}=j\right)=j$ by "taking out what is known." (See Theorems II.2.1 and II.2.2.) Since $X_{3}-X_{1} \in \operatorname{Po}(2)$ we know $E\left(X_{3}-X_{1}\right)=2$ so that

$$
E\left(X_{3} \mid X_{1}=j\right)=2+j, \quad j=0,1,2, \ldots
$$

11. (a) Let T_{8} denote the time after waking at which Keith lights his 8th cigarette. Since $T_{8} \in$ $\Gamma\left(8, \frac{1}{4}\right)$, we conclude

$$
E\left(T_{8}\right)=8 \cdot \frac{1}{4}=2
$$

so that he is expected to light his 8th cigarette at noon, namely 2 hours after 10:00 a.m.
11. (b) The probability that he lights 3 cigarettes or more between noon and 1:00 p.m. is

$$
\begin{aligned}
P\left(X_{3}-X_{2} \geq 3\right) & =1-P\left(X_{3}-X_{2}<3\right) \\
& =1-P\left(X_{3}-X_{2}=0\right)-P\left(X_{3}-X_{2}=1\right)-P\left(X_{3}-X_{2}=2\right) \\
& =1-\frac{4^{0}}{0!} e^{-4}-\frac{4^{1}}{1!} e^{-4}-\frac{4^{2}}{2!} e^{-4} \\
& =1-13 e^{-4}
\end{aligned}
$$

since $X_{3}-X_{2} \in \operatorname{Po}(4)$.

