Stat 351 Fall 2007
Assignment, #9 Solutions

1. (a) By Definition I, we see that X; — pX2 is normally distributed with mean
E(Xy — pXy) = E(X1) — pE(X2) =0
and variance
var(X1 — pXo) = var(X1) 4 p? var(Xs) — 2pcov(Xy, Xo) =1+ p> — 2p%> =1 — p°.

That is, X1 — pXo = Y where Y € N(0,1 — p?). Hence, Y = /1 — p2Z where Z € N(0,1). In
other words, there exists a Z € N(0,1) such that

X1 —pX2 =\ 1— pQZ.
1. (b) Since X = (X1, X2)" is MVN, and since
_ X pXe
Vi-p? 1= p?

we conclude that (Z, X3)' is also a MVN. Hence, we know from Theorem V.7.1 that the components
of a MVN are independent if and only if they are uncorrelated. We find

Z

X 1
cov(Z, Xy) = cov ( p22 ) = —cov(X1, Xo) — Lvar(Xg)

X1
_ ’X
Vi i 1—p? V1=p?
_ o p
VI-p2 1= p?

=0

which verifies that Z and X5 are, in fact, independent.

Exercise 4.2, page 127: If ¢(t,u) = exp{it — 2t — u? — tu} = exp{it — 3(4t* + 2tu + 2u?)}, then
we recognize this as the characteristic function of a normal random variable

X=(X1aX2)/€N<((1)> ’ <le ;>)

Therefore, by Defintion I, X; + X3 is normal with mean F(X;) + F(X2) = 0+ 1 = 1 and vari-
ance var(X1+Xs) = var(X;)+var(X3)+2cov(Xy, Xo) = 4+2+2-1 = 8. That is, X1+X3 € N(1,8).

Exercise 5.3, page 129: Let
0 1 1
B=1|1 01
110
so that Y = BX. By Theorem V.3.1, Y is MVN with mean

0
BO= (0
0



and covariance matrix

011 7/2 1/2 -1 0 11 1 00
BAB' =1 0 1||1/2 172 o ][1 0 1|=[0 2 3
1 10 -1 0 1/2 110 0 3 5
Hence, we see that Y € N(0,X) where
1 00
=10 2 3
0 3 5
We now compute det[¥] =10 -9 =1 and
1 0 0
 l=10 5 -3
0 -3 2

If we write y = (y1,y2, 3/3)/7 then
v'E by = 42 + 52 — Gyays + 242

and so the density of Y is given by

3/2 1
x(ly) = (%) exp {—2(31% + 55 — 6y2y3 + 2y§)} :

Note that this problem could also be solved by observing that Y1 € N(0,1) and

(YQ,YS)’GN«g) ’ <§ g))

are independent so that fy(y) = fv, (y1) - fva,vs(V2, y3)-

Problem #27, page 147: In order to determine the values of a and b for which E(U — a — bV)?
is a minimum, we must minimize the function g(a,b) = E(U —a —bV)2 If U = X1 + X5 + X3 and
V = X1+ 2X5 4+ 3X3, then

U—a—bV:X1+X2+X3—G—b(X1—|—2X2—|—3X3) = (1—b)X1—|—(1—2b)X2+(1—3b)X3—a.
Notice that E(U — a — bV)? = var(U — a — bV) + [E(U — a — bV)]2. We now compute

var(U —a —bV) = var((1 —b) X1 + (1 —20) Xo + (1 — 3b) X3 — a)
= (1 —b)%var(Xy) + (1 — 2b)? var(Xs) + (1 — 3b)? var(X3)
= (1 —b)%+ (1 —2b)* + (1 — 3b)?
using the fact that X7, Xo, X3 are i.i.d. N'(1,1). Furthermore,

E(U —a—bV) =E((1 —b)X1 + (1 — 2b)Xs + (1 —30) X3 —a) = (1 —b) + (1 — 2b) + (1 — 3b) — a
—3-6b—a



which implies that
g(a,b) = (1 =b)% + (1 — 2b)* + (1 — 3b)? + [3 — 6b — a]* = 12 — 48b + 500> — 6a + 12ab + a>.

To minimize g, we begin by finding the critical points. That is,

((ig(a,b) =—6+1204+2a=0

implies a + 6b = 3, and
0
%g(a, b) = —48 +100b + 12a =0
implies 25b + 3a = 12. Solving the second equation for b yields
25b =12 —3a =12 — 3(3 — 6b) and so b:%.

Substituting in gives

18 3
=3-6b=3— — ==
“ 77
Since
2
and

9a29(:b) - 5 50’

we conclude by the second derivative test that a = 3/7, b = 3/7 is indeed the minimum.

2 2 2 2
0 mm.a amy—<a mmO =2.100 - 122 =56 >0

3. (a) If X € U(0,1), then the distribution function of X is

0, ifx <0,
Fx(x)=<z, ifO0<z<l,
1, ifz>1.

Therefore, if Y = —log X, then the distribution function of Y is
Fy(y) =P{Y <y} =P{-logX <y}=P{X >e Y} =1-P{X <eV}=1-Fx(e¥)=1—-¢"Y

provided that y > 0. We recognize this as the distribution function of an Exp(1) random variable.
That is, Y € Exp(1).

3. (b) IfY; = —log X; for i = 1,...,n, then by part (a), we know that Y7,...,Y,, are i.i.d. Exp(1)
random variables. Furthermore,

ﬁXi = exp {logﬁXl} = exp {znjlogXi} = exp {—zn:YZ} .
=1 i=1 =1 i=1

If we now let



then using characteristic functions it follows that Z € I'(n, 1) (or it follows from Problem #20 in
Chapter I or Problem #17 in Chapter IV). Finally, if we let

then the distribution function of W is
Fy(w)=P{W <w}=Ple? <w}=P{Z>—-logw}=1-P{Z < —logw} =1— Fz(—logw).
Hence, the density function of W is

1 _ (—logw)™~!
. —1 n—1_logw _ )
—F(n)( ogw)" ‘e ) O<w<1

S

fiv(w) = - f2(~logw) =



