1. (a) By Definition I, we see that $X_{1}-\rho X_{2}$ is normally distributed with mean

$$
E\left(X_{1}-\rho X_{2}\right)=E\left(X_{1}\right)-\rho E\left(X_{2}\right)=0
$$

and variance

$$
\operatorname{var}\left(X_{1}-\rho X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\rho^{2} \operatorname{var}\left(X_{2}\right)-2 \rho \operatorname{cov}\left(X_{1}, X_{2}\right)=1+\rho^{2}-2 \rho^{2}=1-\rho^{2}
$$

That is, $X_{1}-\rho X_{2}=Y$ where $Y \in N\left(0,1-\rho^{2}\right)$. Hence, $Y=\sqrt{1-\rho^{2}} Z$ where $Z \in N(0,1)$. In other words, there exists a $Z \in N(0,1)$ such that

$$
X_{1}-\rho X_{2}=\sqrt{1-\rho^{2}} Z
$$

1. (b) Since $\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime}$ is MVN, and since

$$
Z=\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}}
$$

we conclude that $\left(Z, X_{2}\right)^{\prime}$ is also a MVN. Hence, we know from Theorem V.7.1 that the components of a MVN are independent if and only if they are uncorrelated. We find

$$
\begin{aligned}
\operatorname{cov}\left(Z, X_{2}\right)=\operatorname{cov}\left(\frac{X_{1}}{\sqrt{1-\rho^{2}}}-\frac{\rho X_{2}}{\sqrt{1-\rho^{2}}}, X_{2}\right) & =\frac{1}{\sqrt{1-\rho^{2}}} \operatorname{cov}\left(X_{1}, X_{2}\right)-\frac{\rho}{\sqrt{1-\rho^{2}}} \operatorname{var}\left(X_{2}\right) \\
& =\frac{\rho}{\sqrt{1-\rho^{2}}}-\frac{\rho}{\sqrt{1-\rho^{2}}} \\
& =0
\end{aligned}
$$

which verifies that Z and X_{2} are, in fact, independent.
Exercise 4.2, page 127: If $\phi(t, u)=\exp \left\{i t-2 t^{2}-u^{2}-t u\right\}=\exp \left\{i t-\frac{1}{2}\left(4 t^{2}+2 t u+2 u^{2}\right)\right\}$, then we recognize this as the characteristic function of a normal random variable

$$
\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime} \in N\left(\binom{1}{0},\left(\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right)\right)
$$

Therefore, by Defintion I, $X_{1}+X_{2}$ is normal with mean $E\left(X_{1}\right)+E\left(X_{2}\right)=0+1=1$ and vari$\operatorname{ance} \operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)=4+2+2 \cdot 1=8$. That is, $X_{1}+X_{2} \in N(1,8)$.

Exercise 5.3, page 129: Let

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem V.3.1, \mathbf{Y} is MVN with mean

$$
B \overline{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
7 / 2 & 1 / 2 & -1 \\
1 / 2 & 1 / 2 & 0 \\
-1 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right) .
$$

Hence, we see that $\mathbf{Y} \in \mathcal{N}(\overline{0}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\Sigma}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 3 & 5
\end{array}\right)
$$

We now compute $\operatorname{det}[\boldsymbol{\Sigma}]=10-9=1$ and

$$
\boldsymbol{\Sigma}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & -3 \\
0 & -3 & 2
\end{array}\right) .
$$

If we write $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\prime}$, then

$$
\mathbf{y}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}=y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}
$$

and so the density of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\mathbf{y})=\left(\frac{1}{2 \pi}\right)^{3 / 2} \exp \left\{-\frac{1}{2}\left(y_{1}^{2}+5 y_{2}^{2}-6 y_{2} y_{3}+2 y_{3}^{2}\right)\right\}
$$

Note that this problem could also be solved by observing that $Y_{1} \in \mathcal{N}(0,1)$ and

$$
\left(Y_{2}, Y_{3}\right)^{\prime} \in \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)\right)
$$

are independent so that $f_{\mathbf{Y}}(\mathbf{y})=f_{Y_{1}}\left(y_{1}\right) \cdot f_{Y_{2}, Y_{3}}\left(y_{2}, y_{3}\right)$.
Problem \#27, page 147: In order to determine the values of a and b for which $\mathbb{E}(U-a-b V)^{2}$ is a minimum, we must minimize the function $g(a, b)=\mathbb{E}(U-a-b V)^{2}$. If $U=X_{1}+X_{2}+X_{3}$ and $V=X_{1}+2 X_{2}+3 X_{3}$, then
$U-a-b V=X_{1}+X_{2}+X_{3}-a-b\left(X_{1}+2 X_{2}+3 X_{3}\right)=(1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a$.
Notice that $\mathbb{E}(U-a-b V)^{2}=\operatorname{var}(U-a-b V)+[\mathbb{E}(U-a-b V)]^{2}$. We now compute

$$
\begin{aligned}
\operatorname{var}(U-a-b V) & =\operatorname{var}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) \\
& =(1-b)^{2} \operatorname{var}\left(X_{1}\right)+(1-2 b)^{2} \operatorname{var}\left(X_{2}\right)+(1-3 b)^{2} \operatorname{var}\left(X_{3}\right) \\
& =(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}
\end{aligned}
$$

using the fact that X_{1}, X_{2}, X_{3} are i.i.d. $\mathcal{N}(1,1)$. Furthermore,

$$
\begin{aligned}
\mathbb{E}(U-a-b V)=\mathbb{E}\left((1-b) X_{1}+(1-2 b) X_{2}+(1-3 b) X_{3}-a\right) & =(1-b)+(1-2 b)+(1-3 b)-a \\
& =3-6 b-a
\end{aligned}
$$

which implies that

$$
g(a, b)=(1-b)^{2}+(1-2 b)^{2}+(1-3 b)^{2}+[3-6 b-a]^{2}=12-48 b+50 b^{2}-6 a+12 a b+a^{2} .
$$

To minimize g, we begin by finding the critical points. That is,

$$
\frac{\partial}{\partial a} g(a, b)=-6+12 b+2 a=0
$$

implies $a+6 b=3$, and

$$
\frac{\partial}{\partial b} g(a, b)=-48+100 b+12 a=0
$$

implies $25 b+3 a=12$. Solving the second equation for b yields

$$
25 b=12-3 a=12-3(3-6 b) \quad \text { and so } \quad b=\frac{3}{7}
$$

Substituting in gives

$$
a=3-6 b=3-\frac{18}{7}=\frac{3}{7} .
$$

Since

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b)=2>0
$$

and

$$
\frac{\partial^{2}}{\partial a^{2}} g(a, b) \cdot \frac{\partial^{2}}{\partial b^{2}} g(a, b)-\left(\frac{\partial^{2}}{\partial a \partial b} g(a, b)\right)^{2}=2 \cdot 100-12^{2}=56>0
$$

we conclude by the second derivative test that $a=3 / 7, b=3 / 7$ is indeed the minimum.
3. (a) If $X \in U(0,1)$, then the distribution function of X is

$$
F_{X}(x)= \begin{cases}0, & \text { if } x \leq 0 \\ x, & \text { if } 0<x<1 \\ 1, & \text { if } x \geq 1\end{cases}
$$

Therefore, if $Y=-\log X$, then the distribution function of Y is
$F_{Y}(y)=P\{Y \leq y\}=P\{-\log X \leq y\}=P\left\{X \geq e^{-y}\right\}=1-P\left\{X \leq e^{-y}\right\}=1-F_{X}\left(e^{-y}\right)=1-e^{-y}$
provided that $y>0$. We recognize this as the distribution function of an $\operatorname{Exp}(1)$ random variable. That is, $Y \in \operatorname{Exp}(1)$.
3. (b) If $Y_{i}=-\log X_{i}$ for $i=1, \ldots, n$, then by part (a), we know that Y_{1}, \ldots, Y_{n} are i.i.d. $\operatorname{Exp}(1)$ random variables. Furthermore,

$$
\prod_{i=1}^{n} X_{i}=\exp \left\{\log \prod_{i=1}^{n} X_{i}\right\}=\exp \left\{\sum_{i=1}^{n} \log X_{i}\right\}=\exp \left\{-\sum_{i=1}^{n} Y_{i}\right\}
$$

If we now let

$$
Z=\sum_{i=1}^{n} Y_{i}
$$

then using characteristic functions it follows that $Z \in \Gamma(n, 1)$ (or it follows from Problem $\# 20$ in Chapter I or Problem \#17 in Chapter IV). Finally, if we let

$$
W=\prod_{i=1}^{n} X_{i}=e^{-Z}
$$

then the distribution function of W is

$$
F_{W}(w)=P\{W \leq w\}=P\left\{e^{-Z} \leq w\right\}=P\{Z \geq-\log w\}=1-P\{Z \leq-\log w\}=1-F_{Z}(-\log w)
$$

Hence, the density function of W is

$$
f_{W}(w)=\frac{1}{w} f_{Z}(-\log w)=\frac{1}{w} \cdot \frac{1}{\Gamma(n)}(-\log w)^{n-1} e^{\log w}=\frac{(-\log w)^{n-1}}{\Gamma(n)}, \quad 0<w<1
$$

