Problem $\# \mathbf{3}$, page 115: If $0 \leq y \leq 1 / 2$, then

$$
f_{Y}(y)=\int_{y}^{1-y} f_{X_{(1)}, X_{(2)}}(y, z) d z=\int_{y}^{1-y} 2 d z=2(1-2 y)
$$

On the other hand, if $1 / 2 \leq y \leq 1$, then

$$
f_{Y}(y)=\int_{1-y}^{y} f_{X_{(1)}, X_{(2)}}(z, 1-y) d z=\int_{1-y}^{y} 2 d z=2(2 y-1)
$$

Problem \#6, page 115: Since $E\left[F\left(X_{(n)}\right)-F\left(X_{(1)}\right)\right]=E\left[F\left(X_{(n)}\right)\right]-E\left[F\left(X_{(1)}\right)\right]$, we compute each of $E\left[F\left(X_{(n)}\right)\right]$ and $E\left[F\left(X_{(1)}\right)\right]$ separately. Therefore, by definition,

$$
E\left[F\left(X_{(n)}\right)\right]=\int_{-\infty}^{\infty} F\left(y_{n}\right) f_{X_{(n)}}\left(y_{n}\right) d y_{n}
$$

From Theorem IV.1.2, we know that $f_{X_{(n)}}\left(y_{n}\right)=n\left[F_{X_{(n)}}\left(y_{n}\right)\right]^{n-1} f\left(y_{n}\right)$ so that

$$
\int_{-\infty}^{\infty} F\left(y_{n}\right) f_{X_{(n)}}\left(y_{n}\right) d y_{n}=\int_{-\infty}^{\infty} n\left[F\left(y_{n}\right)\right]^{n} f\left(y_{n}\right) d y_{n}
$$

Making the substitution $u=F\left(y_{n}\right)$ so that $d u=F^{\prime}\left(y_{n}\right) d y_{n}=f\left(y_{n}\right) d y_{n}$ gives

$$
\int_{-\infty}^{\infty} n\left[F\left(y_{n}\right)\right]^{n} f\left(y_{n}\right) d y_{n}=\int_{0}^{1} n u^{n} d u=\frac{n}{n+1}
$$

Note that since F is a distribution, our new limits of integration are $F(-\infty)=0$ and $F(\infty)=1$. As for $E\left[F\left(X_{(1)}\right)\right]$, using Theorem IV.1.2, we compute

$$
E\left[F\left(X_{(1)}\right)\right]=\int_{-\infty}^{\infty} F\left(y_{1}\right) f_{X_{(1)}}\left(y_{1}\right) d y_{1}=\int_{-\infty}^{\infty} F\left(y_{1}\right) n\left[1-F\left(y_{1}\right)\right]^{n-1} f\left(y_{1}\right) d y_{1}
$$

Making the same substitution as above gives

$$
\int_{-\infty}^{\infty} F\left(y_{1}\right) n\left[1-F\left(y_{1}\right)\right]^{n-1} f\left(y_{1}\right) d y_{1}=\int_{0}^{1} n u(1-u)^{n-1} d u=n \int_{0}^{1}(1-v) v^{n-1} d v=1-\frac{n}{n+1}
$$

Finally, we combine our two results to conclude that

$$
E\left[F\left(X_{(n)}\right)-F\left(X_{(1)}\right)\right]=\frac{n}{n+1}-\left[1-\frac{n}{n+1}\right]=\frac{n-1}{n+1}
$$

Problem $\# 9$, page 116: (a): If X_{1} and X_{2} are independent $\operatorname{Exp}(a)$ random variables, then by Theorem IV.2.1, the joint density of $\left(X_{(1)}, X_{(2)}\right)$ is given by

$$
f_{X_{(1)}, X_{(2)}}\left(y_{1}, y_{2}\right)= \begin{cases}\frac{2}{a^{2}} \exp \left(-\frac{y_{1}+y_{2}}{a}\right), & \text { for } 0<y_{1}<y_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Suppose that $U=X_{(1)}$ and let $V=X_{(2)}-X_{(1)}$. Solving for $X_{(1)}$ and $X_{(2)}$ gives

$$
X_{(1)}=U \quad \text { and } \quad X_{(2)}=U+V
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{cc}
\frac{\partial y_{1}}{\partial u} & \frac{\partial y_{1}}{\partial v} \\
\frac{\partial y_{2}}{\partial u} & \frac{\partial y_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right|=1 .
$$

Therefore, by Theorem I.2.1, the density of (U, V) is given by
$f_{U, V}(u, v)=f_{X_{(1)}, X_{(2)}}(u, u+v) \cdot|J|=\frac{2}{a^{2}} \exp \left(-\frac{u+u+v}{a}\right)=\frac{2}{a^{2}} \exp \left(-\frac{2 u+v}{a}\right)=\frac{2}{a} e^{-2 u / a} \cdot \frac{1}{a} e^{-v / a}$ provided that $v>0$ and $u>0$. The marginal density of U is

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{\infty} \frac{2}{a} e^{-2 u / a} \cdot \frac{1}{a} e^{-v / a} d v=\frac{2}{a} e^{-2 u / a}
$$

for $u>0$. We recognize that this is the density of an exponential random variable with parameter $a / 2$; that is, $U=X_{(1)} \in \operatorname{Exp}(a / 2)$. The marginal density of V is

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d u=\int_{0}^{\infty} \frac{2}{a} e^{-2 u / a} \cdot \frac{1}{a} e^{-v / a} d u=\frac{1}{a} e^{-v / a}
$$

for $v>0$. We recognize that this is the density of an exponential random variable with parameter a; that is, $V=X_{(2)}-X_{(1)} \in \operatorname{Exp}(a)$. Since we can express $f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)$ we conclude that U and V are independent; in other words, $X_{(1)}$ and $X_{(2)}-X_{(1)}$ are independent.
(b): To compute $E\left(X_{(2)} \mid X_{(1)}=y\right)$, we can use properties of conditional expectation (Theorem II.2.2):

$$
\begin{aligned}
E\left(X_{(2)} \mid X_{(1)}=y\right) & =E\left(X_{(2)}-X_{(1)}+X_{(1)} \mid X_{(1)}=y\right) \\
& =E\left(X_{(2)}-X_{(1)} \mid X_{(1)}=y\right)+E\left(X_{(1)} \mid X_{(1)}=y\right) \\
& =E\left(X_{(2)}-X_{(1)}\right)+y \\
& =a+y
\end{aligned}
$$

where the first expression after the third equality follows since $X_{(2)}-X_{(1)}$ is independent of $X_{(1)}$ and the second expression follows since $X_{(1)}$ is "known" when conditioned on the value $X_{(1)}=y$.

As for $E\left(X_{(1)} \mid X_{(2)}=x\right)$, we need to compute this by definition of conditional expectation. That is,

$$
f_{X_{(1)} \mid X_{(2)}=x}\left(y_{1}\right)=\frac{f_{X_{(1)}, X_{(2)}}\left(y_{1}, x\right)}{f_{X_{(2)}}(x)}=\frac{\frac{2}{a^{2}} e^{-y_{1} / a} \cdot e^{-x / a}}{\frac{2}{a}\left(1-e^{-x / a}\right) \cdot e^{-x / a}}=\frac{1}{a} \frac{e^{-y_{1} / a}}{1-e^{-x / a}}
$$

provided $0<y_{1}<x$. This then gives

$$
E\left(X_{(1)} \mid X_{(2)}=x\right)=\int_{-\infty}^{\infty} f_{X_{(1)} \mid X_{(2)}=x}\left(y_{1}\right) d y_{1}=\int_{0}^{x} \frac{y_{1}}{a} \frac{e^{-y_{1} / a}}{1-e^{-x / a}} d y_{1}=\frac{1}{a\left(1-e^{-x / a}\right)} \int_{0}^{x} y_{1} e^{-y_{1} / a} d y_{1}
$$

Integrating by parts gives

$$
\int_{0}^{x} y_{1} e^{-y_{1} / a} d y_{1}=a^{2}-a^{2} e^{-x / a}-a x e^{-x / a}
$$

Therefore,

$$
E\left(X_{(1)} \mid X_{(2)}=x\right)=\frac{a^{2}-a^{2} e^{-x / a}-a x e^{-x / a}}{a\left(1-e^{-x / a}\right)}=a-\frac{x e^{-x / a}}{1-e^{-x / a}}=a-\frac{x}{e^{x / a}-1}
$$

Problem \#10, page 116: Let X_{1}, X_{2}, and X_{3} are independent, identically distributed $U(0,1)$ random variables. Notice that if $x>1 / 2$, then since $X_{(3)}>X_{(1)}$ we conclude

$$
P\left(\left.X_{(3)}>\frac{1}{2} \right\rvert\, X_{(1)}=x\right)=1
$$

On the other hand, suppose that $0 \leq x \leq 1 / 2$. By equation (3.10) on page 114 ,

$$
f_{X_{(1)}, X_{(3)}}\left(y_{1}, y_{3}\right)=6\left(y_{3}-y_{1}\right)
$$

provided $0<y_{1}<y_{3}<1$. Therefore, we find

$$
P\left(\left.X_{(3)}>\frac{1}{2} \right\rvert\, X_{(1)}=x\right)=\frac{\int_{1 / 2}^{1} f_{X_{(1)}, X_{(3)}}\left(x, y_{3}\right) d y_{3}}{f_{X_{(1)}}(x)}
$$

For the numerator we calculate

$$
\int_{1 / 2}^{1} f_{X_{(1)}, X_{(3)}}\left(x, y_{3}\right) d y_{3} \int_{1 / 2}^{1} 6\left(y_{3}-x\right) d y_{3}=\left.\left(3 y_{3}^{2}-6 x y_{3}\right)\right|_{1 / 2} ^{1}=\frac{9}{4}-3 x=\frac{3}{4}(3-4 x)
$$

As for the denominator, from Remark 3.1 on page 114, we find

$$
f_{X_{(1)}}(x)=3(1-x)^{2}
$$

provided $0<x<1$. Putting these pieces together, we conclude

$$
P\left(\left.X_{(3)}>\frac{1}{2} \right\rvert\, X_{(1)}=x\right)=\frac{\frac{3}{4}(3-4 x)}{3(1-x)^{2}}=\frac{(3-4 x)}{4(1-x)^{2}}
$$

That is,

$$
P\left(\left.X_{(3)}>\frac{1}{2} \right\rvert\, X_{(1)}=x\right)= \begin{cases}\frac{(3-4 x)}{4(1-x)^{2}}, & \text { if } 0 \leq x \leq 1 / 2 \\ 1, & \text { if } x>1 / 2\end{cases}
$$

Problem \#12, page 116: Since $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are i.i.d. $U(0, a)$ random variables, we conclude from Theorem IV.1.2 that $X_{(n)}$ and $Y_{(n)}$ are independent and identically distributed $\beta(1, n)$ random variables. In order to simplify matters we let $X=X_{(n)}$ and $Y=Y_{(n)}$ so that X and Y have common density function

$$
f(x)=\frac{n}{a^{n}} x^{n-1}, \quad 0<x<a
$$

and common distribution function

$$
F(x)= \begin{cases}0, & x \leq 0 \\ \frac{x^{n}}{a^{n}}, & 0<x<a \\ 1, & x \geq 1\end{cases}
$$

If we now let $S=\min \{X, Y\}$ and $T=\max \{X, Y\}$, then Theorem IV.2.1 implies that the joint density of (S, T) is

$$
f_{S, T}(s, t)=2 \cdot \frac{n}{a^{n}} s^{n-1} \cdot \frac{n}{a^{n}} t^{n-1}=\frac{2 n^{2}}{a^{2 n}} s^{n-1} t^{n-1}, \quad 0<s<t<a .
$$

The next step is to let $U=\frac{T}{S}$ and $V=S$ so that $S=V$ and $T=U V$. We find the Jacobian of this transformation is

$$
J=\left|\begin{array}{ll}
\frac{\partial s}{\partial u} & \frac{\partial s}{\partial v} \\
\frac{\partial t}{\partial u} & \frac{\partial t}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
0 & 1 \\
v & u
\end{array}\right|=-v .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{S, T}(v, u v) \cdot|J|=\frac{2 n^{2}}{a^{2 n}} v^{n-1}(u v)^{n-1} \cdot v=\frac{2 n^{2}}{a^{2 n}} u^{n-1} v^{2 n-1}
$$

provided that $1<u<\infty, 0<v<\frac{a}{u}<a$. The marginal density for U is therefore given by $f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) \mathrm{d} v=\frac{2 n^{2}}{a^{2 n}} u^{n-1} \int_{0}^{a / u} v^{2 n-1} \mathrm{~d} v=\left.\frac{n}{a^{2 n}} u^{n-1} v^{2 n}\right|_{v=0} ^{v=a / u}=\frac{n}{a^{2 n}} u^{n-1} \frac{a^{2 n}}{u^{2 n}}=n u^{-(n+1)}$
provided that $1<u<\infty$. Since we are interested in

$$
Z_{n}=n \log \left(\frac{\max \left\{X_{(n)}, Y_{(n)}\right\}}{\min \left\{X_{(n)}, Y_{(n)}\right\}}\right)=n \log U
$$

we can now use techniques from Chapter I to find the density of Z_{n}. Let $Z=Z_{n}=n \log U$. Therefore, $F_{Z}(z)=P(Z \leq z)=P\left(U \leq e^{z / n}\right)$ and so

$$
f_{Z}(z)=\frac{1}{n} e^{z / n} f_{U}\left(e^{z / n}\right)=\frac{1}{n} e^{z / n} \cdot n\left(e^{z / n}\right)^{-(n+1)}=e^{-z}
$$

provided that $0<z<\infty$. Hence we conclude that $Z_{n} \in \operatorname{Exp}(1)$.

