
Stat 351 Fall 2007
Assignment #6 Solutions

Problem #3, page 115: If 0 ≤ y ≤ 1/2, then

fY (y) =
∫ 1−y

y
fX(1),X(2)

(y, z) dz =
∫ 1−y

y
2 dz = 2(1− 2y).

On the other hand, if 1/2 ≤ y ≤ 1, then

fY (y) =
∫ y

1−y
fX(1),X(2)

(z, 1− y) dz =
∫ y

1−y
2 dz = 2(2y − 1).

Problem #6, page 115: Since E[F (X(n)) − F (X(1))] = E[F (X(n))] − E[F (X(1))], we compute
each of E[F (X(n))] and E[F (X(1))] separately. Therefore, by definition,

E[F (X(n))] =
∫ ∞

−∞
F (yn)fX(n)

(yn) dyn.

From Theorem IV.1.2, we know that fX(n)
(yn) = n[FX(n)

(yn)]n−1f(yn) so that∫ ∞

−∞
F (yn)fX(n)

(yn) dyn =
∫ ∞

−∞
n[F (yn)]nf(yn) dyn.

Making the substitution u = F (yn) so that du = F ′(yn)dyn = f(yn)dyn gives∫ ∞

−∞
n[F (yn)]nf(yn) dyn =

∫ 1

0
nun du =

n

n + 1
.

Note that since F is a distribution, our new limits of integration are F (−∞) = 0 and F (∞) = 1.
As for E[F (X(1))], using Theorem IV.1.2, we compute

E[F (X(1))] =
∫ ∞

−∞
F (y1)fX(1)

(y1) dy1 =
∫ ∞

−∞
F (y1)n[1− F (y1)]n−1f(y1) dy1.

Making the same substitution as above gives∫ ∞

−∞
F (y1)n[1− F (y1)]n−1f(y1) dy1 =

∫ 1

0
nu(1− u)n−1 du = n

∫ 1

0
(1− v)vn−1 dv = 1− n

n + 1
.

Finally, we combine our two results to conclude that

E[F (X(n))− F (X(1))] =
n

n + 1
−

[
1− n

n + 1

]
=

n− 1
n + 1

.

Problem #9, page 116: (a): If X1 and X2 are independent Exp(a) random variables, then by
Theorem IV.2.1, the joint density of (X(1), X(2)) is given by

fX(1),X(2)
(y1, y2) =

{
2
a2 exp

(
−y1+y2

a

)
, for 0 < y1 < y2 < ∞,

0, otherwise.

Suppose that U = X(1) and let V = X(2) −X(1). Solving for X(1) and X(2) gives

X(1) = U and X(2) = U + V.



The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂y1

∂u
∂y1

∂v

∂y2

∂u
∂y2

∂v

∣∣∣∣∣ =
∣∣∣∣1 0
1 1

∣∣∣∣ = 1.

Therefore, by Theorem I.2.1, the density of (U, V ) is given by

fU,V (u, v) = fX(1),X(2)
(u, u+v)·|J | = 2

a2
exp

(
−u + u + v

a

)
=

2
a2

exp
(
−2u + v

a

)
=

2
a
e−2u/a·1

a
e−v/a

provided that v > 0 and u > 0. The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

0

2
a
e−2u/a · 1

a
e−v/a dv =

2
a
e−2u/a

for u > 0. We recognize that this is the density of an exponential random variable with parameter
a/2; that is, U = X(1) ∈ Exp(a/2). The marginal density of V is

fV (v) =
∫ ∞

−∞
fU,V (u, v) du =

∫ ∞

0

2
a
e−2u/a · 1

a
e−v/a du =

1
a
e−v/a

for v > 0. We recognize that this is the density of an exponential random variable with parameter
a; that is, V = X(2) −X(1) ∈ Exp(a). Since we can express fU,V (u, v) = fU (u) · fV (v) we conclude
that U and V are independent; in other words, X(1) and X(2) −X(1) are independent.

(b): To compute E(X(2)|X(1) = y), we can use properties of conditional expectation (Theo-
rem II.2.2):

E(X(2)|X(1) = y) = E(X(2) −X(1) + X(1)|X(1) = y)

= E(X(2) −X(1)|X(1) = y) + E(X(1)|X(1) = y)

= E(X(2) −X(1)) + y

= a + y

where the first expression after the third equality follows since X(2) −X(1) is independent of X(1)

and the second expression follows since X(1) is “known” when conditioned on the value X(1) = y.

As for E(X(1)|X(2) = x), we need to compute this by definition of conditional expectation. That
is,

fX(1)|X(2)=x(y1) =
fX(1),X(2)

(y1, x)

fX(2)
(x)

=
2
a2 e−y1/a · e−x/a

2
a(1− e−x/a) · e−x/a

=
1
a

e−y1/a

1− e−x/a

provided 0 < y1 < x. This then gives

E(X(1)|X(2) = x) =
∫ ∞

−∞
fX(1)|X(2)=x(y1) dy1 =

∫ x

0

y1

a

e−y1/a

1− e−x/a
dy1 =

1
a(1− e−x/a)

∫ x

0
y1 e−y1/a dy1.

Integrating by parts gives ∫ x

0
y1 e−y1/a dy1 = a2 − a2e−x/a − axe−x/a.



Therefore,

E(X(1)|X(2) = x) =
a2 − a2e−x/a − axe−x/a

a(1− e−x/a)
= a− xe−x/a

1− e−x/a
= a− x

ex/a − 1
.

Problem #10, page 116: Let X1, X2, and X3 are independent, identically distributed U(0, 1)
random variables. Notice that if x > 1/2, then since X(3) > X(1) we conclude

P (X(3) > 1
2 |X(1) = x) = 1.

On the other hand, suppose that 0 ≤ x ≤ 1/2. By equation (3.10) on page 114,

fX(1),X(3)
(y1, y3) = 6(y3 − y1)

provided 0 < y1 < y3 < 1. Therefore, we find

P (X(3) > 1
2 |X(1) = x) =

∫ 1

1/2
fX(1),X(3)

(x, y3) dy3

fX(1)
(x)

.

For the numerator we calculate∫ 1

1/2
fX(1),X(3)

(x, y3) dy3

∫ 1

1/2
6(y3 − x) dy3 = (3y2

3 − 6xy3)
∣∣∣∣1
1/2

=
9
4
− 3x =

3
4
(3− 4x).

As for the denominator, from Remark 3.1 on page 114, we find

fX(1)
(x) = 3(1− x)2

provided 0 < x < 1. Putting these pieces together, we conclude

P (X(3) > 1
2 |X(1) = x) =

3
4(3− 4x)
3(1− x)2

=
(3− 4x)
4(1− x)2

.

That is,

P (X(3) > 1
2 |X(1) = x) =

{
(3−4x)
4(1−x)2

, if 0 ≤ x ≤ 1/2,

1, if x > 1/2.

Problem #12, page 116: Since X1, . . . , Xn, Y1, . . . , Yn are i.i.d. U(0, a) random variables, we
conclude from Theorem IV.1.2 that X(n) and Y(n) are independent and identically distributed
β(1, n) random variables. In order to simplify matters we let X = X(n) and Y = Y(n) so that X
and Y have common density function

f(x) =
n

an
xn−1, 0 < x < a

and common distribution function

F (x) =


0, x ≤ 0,
xn

an , 0 < x < a,

1, x ≥ 1.



If we now let S = min{X, Y } and T = max{X, Y }, then Theorem IV.2.1 implies that the joint
density of (S, T ) is

fS,T (s, t) = 2 · n

an
sn−1 · n

an
tn−1 =

2n2

a2n
sn−1tn−1, 0 < s < t < a.

The next step is to let U = T
S and V = S so that S = V and T = UV . We find the Jacobian of

this transformation is

J =

∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣ =
∣∣∣∣0 1
v u

∣∣∣∣ = −v.

The density of (U, V ) is therefore given by

fU,V (u, v) = fS,T (v, uv) · |J | = 2n2

a2n
vn−1(uv)n−1 · v =

2n2

a2n
un−1v2n−1

provided that 1 < u < ∞, 0 < v < a
u < a. The marginal density for U is therefore given by

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

2n2

a2n
un−1

∫ a/u

0
v2n−1 dv =

n

a2n
un−1v2n

∣∣∣∣v=a/u

v=0

=
n

a2n
un−1 a2n

u2n
= nu−(n+1)

provided that 1 < u < ∞. Since we are interested in

Zn = n log
(

max{X(n), Y(n)}
min{X(n), Y(n)}

)
= n log U

we can now use techniques from Chapter I to find the density of Zn. Let Z = Zn = n log U .
Therefore, FZ(z) = P (Z ≤ z) = P (U ≤ ez/n) and so

fZ(z) =
1
n

ez/nfU (ez/n) =
1
n

ez/n · n(ez/n)−(n+1) = e−z

provided that 0 < z < ∞. Hence we conclude that Zn ∈ Exp(1).


