
Stat 351 Fall 2007
Assignment #3 Solutions

Problem #3, page 27: Suppose that T ∈ t(n) so that the density of T is given by

fT (x) =
Γ(n+1

2 )
√

πn Γ(n
2 )
·
(

1 +
x2

n

)−(n+1)/2

, −∞ < x < ∞.

Let Y = T 2. If y ≥ 0, then the distribution function of Y is given by

FY (y) = P (Y ≤ y) = P (T 2 ≤ y) = P (−√y ≤ T ≤ √
y) =

∫ √
y

−√y
fT (x) dx

=
∫ √

y

0
fT (x) dx−

∫ −√y

0
fT (x) dx.

Taking derivatives with respect to y gives

fY (y) = fT (
√

y) · 1
2
√

y
− fT (−√y) · −1

2
√

y
=

1
2
√

y
( fT (

√
y) + fT (−√y) )

=
Γ(n+1

2 )
√

πny Γ(n
2 )
·
(
1 +

y

n

)−(n+1)/2

=
Γ(1+n

2 )
(

1
n

)1/2

Γ(1
2) Γ(n

2 )
· y1/2−1(

1 + y
n

)(1+n)/2
, y ≥ 0.

In order to write this last line, we have used the fact that Γ(1/2) =
√

π. Notice that this is the
density of an F (1, n) random variable. (See page 261.)

Problem #5, page 27: Suppose that X ∈ C(0, 1) so that the density of X is given by

fX(x) =
1
π
· 1
1 + x2

, −∞ < x < ∞.

Let Y = X2. If y ≥ 0, then the distribution function of Y is given by

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√y ≤ X ≤ √
y) =

∫ √
y

−√y
fX(x) dx

=
∫ √

y

0
fX(x) dx−

∫ −√y

0
fX(x) dx.

Taking derivatives with respect to y gives

fY (y) = fX(
√

y) · 1
2
√

y
− fX(−√y) · −1

2
√

y
=

1
2
√

y
( fX(

√
y) + fX(−√y) ) =

1
π
√

y
· 1
1 + y

, y ≥ 0.

Notice that this is the density of an F (1, 1) random variable. (See page 261 and recall that Γ(1) = 1,
Γ(1/2) =

√
π.)

Problem #6, page 27: If X ∈ β(1, 1), then the density function of X is

fX(x) =
Γ(1 + 1)
Γ(1)Γ(1)

x1−1(1− x)1−1 = 1, 0 < x < 1.



(We have used the fact that Γ(2) = Γ(1) = 1.) Since the density of X is also that of a uniform
random variable, we conclude X ∈ U(0, 1). Therefore, β(1, 1) = U(0, 1).

Problem #9, page 27: Suppose that X ∈ N(0, 1) and Y ∈ χ2(n) are independent random
variables. Let U = X√

Y/n
and V =

√
Y/n so that solving for X and Y gives

X = UV and Y = nV 2.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣v u
0 2nv

∣∣∣∣ = 2nv2.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (uv, nv2) · |J | = 2nv2fX(uv)fY (nv2)

using the assumed independence of X and Y . Substituting in the corresponding densities gives

fU,V (u, v) = 2nv2 1√
2π

e−u2v2/2 1
Γ(n/2)

(nv2)n/2−12−n/2e−nv2/2 =
nn/2

2n/2−1/2
√

π Γ(n/2)
vne−v2(u2+n)/2

provided that −∞ < u < ∞, 0 < v < ∞. The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

nn/2

2n/2−1/2
√

π Γ(n/2)

∫ ∞

0
vne−v2(u2+n)/2 dv.

Making the substitution z = v2(u2 + n)/2 so that dz = v(u2 + n)dv gives

nn/2

2n/2−1/2
√

π Γ(n/2)

∫ ∞

0
vne−v2(u2+n)/2 dv =

nn/2

2n/2−1/2
√

π Γ(n/2)
(u2 + n)−1/2−n/22n/2−1/2

∫ ∞

0
zn/2−1/2e−z dz

=
nn/2

√
π Γ(n/2)

(u2 + n)−1/2−n/2Γ(n/2 + 1/2)

=
nn/2Γ(n/2 + 1/2)√

π Γ(n/2)
(u2 + n)−1/2−n/2

=
Γ(n+1

2 )
√

nπ Γ(n
2 )

1
(1 + u2

n )(n+1)/2

provided −∞ < u < ∞. We recognize that this is the density of a t(n) random variable (see page
261), and so we conclude that U = X√

Y/n
∈ t(n).

Problem #10, page 28: Suppose that X ∈ χ2(m) and Y ∈ χ2(n) are independent random
variables. Let U = X/m

Y/n and V = Y/n so that solving for X and Y gives

X = mUV and Y = nV.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣mv mu

0 n

∣∣∣∣ = mnv.



The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (muv, nv) · |J | = mnvfX(muv)fY (nv)

using the assumed independence of X and Y . Substituting in the corresponding densities gives

fU,V (u, v) = mnv
1

Γ(m/2)
(muv)m/2−12−m/2e−muv/2 1

Γ(n/2)
(nv)n/2−12−n/2e−nv/2

=
mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
vm/2+n/2−1um/2−1e−v(mu+n)/2

provided that 0 < u < ∞, 0 < v < ∞. The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−1

∫ ∞

0
vm/2+n/2−1e−v(mu+n)/2 dv.

Making the substitution z = v(mu + n)/2 so that dz = (mu + n)/2dv gives

mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−1

∫ ∞

0
vm/2+n/2−1e−v(mu+n)/2 dv

=
mm/2nn/22−m/2−n/2

Γ(m/2)Γ(n/2)
um/2−12m/2+n/2(mu + n)−m/2−n/2

∫ ∞

0
zm/2+n/2+1e−z dz

=
mm/2nn/2

Γ(m/2)Γ(n/2)
um/2−1(mu + n)−m/2−n/2Γ(m/2 + n/2)

=
Γ(m+n

2 )
Γ(m

2 )Γ(n
2 )

mm/2nn/2 um/2−1

(mu + n)(m+n)/2

=
Γ(m+n

2 )
(

m
n

)n/2

Γ(m
2 )Γ(n

2 )
um/2−1

(1 + mu
n )(m+n)/2

provided 0 < u < ∞. We recognize that this is the density of a F (m,n) random variable (see page
261), and so we conclude that U = X/m

Y/n ∈ F (m, n).

Problem #11, page 28: If X ∈ Exp(a), then a quick calculation shows that 2X
a ∈ Exp(2).

However, comparing the exponential and chi-square densities (see page 260), we see that Exp(2) =
χ2(2). Similarly, 2Y/a ∈ Exp(2) = χ2(2). Thus, using the result of Problem #10, we conclude that

X

Y
=

2X/a

2Y/a
∈ F (2, 2).

Problem #23, page 29: Suppose that X and Y have joint density

fX,Y (x, y) =

{
x

(1+x)2(1+xy)2
, for x, y > 0,

0, otherwise.

Let U = X and V = XY so that solving for X and Y gives

X = U and Y = V/U.



The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 1 0
−v/u2 1/u

∣∣∣∣ =
1
u

.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (u, v/u) · |J | = u

(1 + u)2(1 + u · v/u)2
· 1
u

=
1

(1 + u)2
· 1
(1 + v)2

,

provided that 0 < u < ∞, 0 < v < ∞. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) =

1
(1 + u)2

for u > 0, and fV (v) =
1

(1 + v)2
for v > 0.

Notice that both U and V have the same distribution, namely F (2, 2). (See page 261.)

Problem #24, page 29: Suppose that X and Y have joint density

fX,Y (x, y) =

{
2

(1+x+y)3
for x, y > 0,

0, otherwise.

(a) Let U = X + Y and V = X
X+Y so that solving for X and Y gives

X = UV and Y = U − UV.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ v u
1− v −u

∣∣∣∣ = −u.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (uv, u− uv) · |J | = 2
(1 + uv + u− uv)3

· u =
2u

(1 + u)3
,

provided that 0 < u < ∞, 0 < v < 1. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) =

2u

(1 + u)3
for u > 0, and fV (v) = 1 for 0 < v < 1.

Therefore, the density of X + Y is

fX+Y (u) =
2u

(1 + u)3
for u > 0.



(b) Let U = X − Y and V = X, so that solving for X and Y gives

X = V and Y = V − U.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 0 1
−1 1

∣∣∣∣ = 1.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (v, v − u) · |J | = 2
(1 + v + v − u)3

· 1 =
2

(1 + 2v − u)3
,

provided that v > u and v > 0 (i.e., v > max{0, u}), and −∞ < u < ∞. If u > 0, then
max{u, 0} = u, and so we calculate

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

u

2
(1 + 2v − u)3

dv =
1

2(1 + 2v − u)2

∣∣∣∣∞
u

=
1

2(1 + u)2
.

If u ≤ 0, then max{u, 0} = 0, and so we calculate

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

0

2
(1 + 2v − u)3

dv =
1

2(1 + 2v − u)2

∣∣∣∣∞
0

=
1

2(1− u)2
.

Therefore, the density of X − Y is

fX−Y (u) =
1

2(1 + |u|)2
for −∞ < u < ∞.

Problem #25, page 30: Suppose that U = X2Y and let V = X. Solving for X and Y gives

X = V and Y =
U

V 2
.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣ 0 1
v−2 −2uv−3

∣∣∣∣ = −v−2.

If the density of (X, Y ) is

fX,Y (x, y) =

{
e−x2y, for x ≥ 1, y > 0,

0, otherwise,

then the density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (v, uv−2) · |J | = 1
v2

e−u

provided that v ≥ 1 and u > 0. We can now determine the density of U as follows.



Routine Way: The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

1

1
v2

e−u dv = e−u
[
−v−1

]∞
1

= e−u

for u > 0. We recognize that this is the density of an exponential random variable with parameter
1; that is, U = X2Y ∈ Exp(1).

Slick Way: Since the joint density of (U, V ) is

fU,V (u, v) =

{
v−2e−u, for v ≥ 1, u > 0,

0, otherwise,

we can immediately conclude that U and V are independent random variables with fV (v) = v−2

for v ≥ 1 and fU (u) = e−u for u > 0. And so we find (as before) that U = X2Y ∈ Exp(1).

Problem #26, page 30: Suppose that X and Y have joint density

fX,Y (x, y) =

{
λ2e−λy, for 0 < x < y,

0, otherwise.

Let U = Y and V = X
Y−X so that solving for X and Y gives

X =
UV

1 + V
and Y = U.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣v(1 + v)−1 u(1 + v)−2

1 0

∣∣∣∣ = − u

(1 + v)2
.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX,Y (uv(1 + v)−1, u) · |J | = λ2e−λu · u

(1 + v)2
= λ2u e−λu · 1

(1 + v)2
,

provided that 0 < u < ∞, 0 < v < ∞. Since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fU,V (u, v) = fU (u) · fV (v)

where
fU (u) = λ2u e−λu for u > 0, and fV (v) =

1
(1 + v)2

for v > 0.

Notice that U ∈ Γ(2, λ−1) and that V ∈ F (2, 2). (See pages 260–261.)

Problem #27, page 30: Suppose that X1 ∈ Γ(a1, b) and X2 ∈ Γ(a2, b) are independent random
variables so that their joint density is

fX,Y (x, y) = fX(x) · fY (y) =

{
1

Γ(a1)Γ(a2)x
a1−1
1 xa2−1

2
1

ba1+a2
e−x1/b−x2/b, for x1 > 0, x2 > 0,

0, otherwise.



Let U = X1
X2

and V = X1 + X2, so that solving for X1 and X2 gives

X1 =
UV

U + 1
and X2 =

V

U + 1
.

The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂x1
∂u

∂x1
∂v

∂x2
∂u

∂x2
∂v

∣∣∣∣∣ =
∣∣∣∣ v(1 + u)−2 u(1 + u)−1

−v(1 + u)−2 (1 + u)−1

∣∣∣∣ =
v

(1 + u)2
.

The density of (U, V ) is therefore given by

fU,V (u, v) = fX1,X2(uv(1 + u)−1, v(1 + u)−1) · |J |

=
1

Γ(a1)Γ(a2)
(uv(1 + u)−1)a1−1(v(1 + u)−1)a2−1 1

ba1+a2
e−uv(1+u)−1/b−v(1+u)−1/b · v

(1 + u)2

=
1

Γ(a1)Γ(a2)
1

ba1+a2

ua1−1va1+a2−1

(1 + u)a1+a2
e−v/b

provided that 0 < u < ∞, 0 < v < ∞. The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

1
Γ(a1)Γ(a2)

1
ba1+a2

ua1−1

(1 + u)a1+a2

∫ ∞

0
va1+a2−1e−v/b dv

To evaluate ∫ ∞

0
va1+a2−1e−v/b dv

we make the substitution z = v
b so that dz = 1

bdv. This implies that∫ ∞

0
va1+a2−1e−v/b dv =

∫ ∞

0
(bz)a1+a2−1e−zb dz = ba1+a2

∫ ∞

0
za1+a2−1e−z dz

= ba1+a2Γ(a1 + a2).

This now implies that

fU (u) =
1

Γ(a1)Γ(a2)
1

ba1+a2

ua1−1

(1 + u)a1+a2
ba1+a2Γ(a1 + a2) =

Γ(a1 + a2)
Γ(a1)Γ(a2)

ua1−1

(1 + u)a1+a2
, u > 0,

which we recognize as the density of a β(a1, a2) random variable. (See page 260.) To find the
marginal density of V we observe that since we can write the joint density as a product of a
function of u only multiplied by a function of v only, we conclude that U and V are independent.
That is,

fU,V (u, v) = fU (u) · fV (v)

where

fU (u) =
Γ(a1 + a2)
Γ(a1)Γ(a2)

ua1−1

(1 + u)a1+a2
, u > 0,

and

fV (v) =
fU,V (u, v)

fU (u)
=

1
Γ(a1)Γ(a2)

1
ba1+a2

ua1−1va1+a2−1

(1+u)a1+a2
e−v/b

Γ(a1+a2)
Γ(a1)Γ(a2)

ua1−1

(1+u)a1+a2

=
1

Γ(a1 + a2)
va1+a2−1 1

ba1+a2
e−v/b, v > 0.



Notice that V = X1 + X2 ∈ Γ(a1 + a2, b). (See page 260.) Alternatively, we can calculate

fV (v) =
∫ ∞

−∞
fU,V (u, v) du =

1
Γ(a1)Γ(a2)

1
ba1+a2

va1+a2−1e−v/b

∫ ∞

0

ua1−1

(1 + u)a1+a2
du.

Observe that
Γ(a1 + a2)
Γ(a1)Γ(a2)

ua1−1

(1 + u)a1+a2
, u > 0,

is the density of a β(a1, a2) random variable. This implies that∫ ∞

0

ua1−1

(1 + u)a1+a2
du =

Γ(a1)Γ(a2)
Γ(a1 + a2)

,

and so we conclude that

fV (v) =
1

Γ(a1 + a2)
1

ba1+a2
va1+a2−1e−v/b, v > 0,

as before.


