2. (a) If $X \sim \operatorname{Unif}[0,2]$, then $F_{X}(x)=\frac{x}{2}$ for $0 \leq x \leq 2$, and if $Y \sim \operatorname{Exp}(3)$, then $F_{Y}(y)=1-e^{-y / 3}$ for $y>0$. Since X and Y are independent, we conclude that

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)=\frac{x}{2}\left(1-e^{-y / 3}\right)
$$

for $0 \leq x \leq 2$ and $y>0$. We should also note that if $x<0$, then $F_{X}(x)=0$ and if $x \geq 2$, then $F_{X}(x)=1$. Furthermore, if $y \leq 0$, then $F_{Y}(y)=0$. Combining everything we conclude

$$
F_{X, Y}(x, y)= \begin{cases}\frac{x}{2}\left(1-e^{-y / 3}\right), & \text { if } 0 \leq x \leq 2 \text { and } y>0 \\ 1-e^{-y / 3}, & \text { if } x>2 \text { and } y>0 \\ 0, & \text { if } x<0 \text { or } y \leq 0\end{cases}
$$

(b) We find

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y}\left[\frac{x}{2}\left(1-e^{-y / 3}\right)\right]=\frac{1}{2} \cdot \frac{1}{3} e^{-y / 3}
$$

Since $f_{X}(x)=\frac{1}{2}$ and $f_{Y}(y)=\frac{1}{3} e^{-y / 3}$, we see that

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

as required.
(c) If $Z \sim \mathcal{N}(0,1)$ is independent of X and Y, then the joint density of (X, Y, Z) is given by

$$
f_{X, Y, Z}(x, y, z)=f_{X}(x) \cdot f_{Y}(y) \cdot f_{Z}(z)=\frac{1}{2} \cdot \frac{1}{3} e^{-y / 3} \cdot \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}=\frac{1}{\sqrt{72 \pi}} e^{-\frac{1}{6}\left(2 y+3 z^{2}\right)}
$$

for $0 \leq x \leq 2, y>0$, and $-\infty<z<\infty$.
3. If X and Y are both discrete random variables, and their joint mass function is $p_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\sum_{x^{\prime} \leq x} \sum_{y^{\prime} \leq y} p_{X, Y}\left(x^{\prime}, y^{\prime}\right)
$$

If X and Y are both continuous random variables, and their joint density function is $f_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d v d u
$$

