Suppose that the random vector $\mathbf{X}=(X, Y)^{\prime}$ has a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Lambda}$ given by

$$
\boldsymbol{\mu}=\binom{\mu_{x}}{\mu_{y}} \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{x} & \sigma_{y}^{2}
\end{array}\right)
$$

Note that in this notation, $\rho=\operatorname{corr}(X, Y)$.
The characteristic function of $\mathbf{X}$ is

$$
\varphi_{\mathbf{X}}(\mathbf{t})=\exp \left\{i \mu_{x} t_{1}+i \mu_{y} t_{2}-\frac{1}{2}\left(\sigma_{x}^{2} t_{1}^{2}+2 \rho \sigma_{x} \sigma_{y} t_{1} t_{2}+\sigma_{y}^{2} t_{2}^{2}\right)\right\}
$$

Written in matrix notation, we have

$$
\varphi_{\mathbf{X}}(\mathbf{t})=\exp \left\{i \mathbf{t} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Lambda} \mathbf{t}\right\}
$$

The density of $\mathbf{X}$ is
$f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-2 \rho \frac{\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)}{\sigma_{x} \sigma_{y}}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right)\right\}$
which written in matrix notation is

$$
f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi} \frac{1}{\sqrt{\operatorname{det} \boldsymbol{\Lambda}}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Lambda}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

Of course, there are some noticeable similarities between these two functions. In particular, if $\boldsymbol{\mu}=(0,0)^{\prime}$, then

$$
\varphi_{\mathbf{X}}(\mathbf{t})=\exp \left\{-\frac{1}{2}\left(\sigma_{x}^{2} t_{1}^{2}+2 \rho \sigma_{x} \sigma_{y} t_{1} t_{2}+\sigma_{y}^{2} t_{2}^{2}\right)\right\}=\exp \left\{-\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Lambda} \mathbf{t}\right\}
$$

and

$$
\begin{aligned}
f_{\mathbf{X}}(x, y) & =\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{x}{\sigma_{x}}\right)^{2}-2 \rho \frac{x y}{\sigma_{x} \sigma_{y}}+\left(\frac{y}{\sigma_{y}}\right)^{2}\right)\right\} \\
& =\frac{1}{2 \pi} \frac{1}{\sqrt{\operatorname{det} \boldsymbol{\Lambda}}} \exp \left\{-\frac{1}{2} \mathbf{x}^{\prime} \mathbf{\Lambda}^{-1} \mathbf{x}\right\}
\end{aligned}
$$

Example: (a) Let $\mathbf{X}=(X, Y)^{\prime}$ have characteristic function

$$
\varphi_{\mathbf{X}}(x, y)=\exp \left\{-\frac{1}{2}\left(x^{2}-2 x y+2 y^{2}\right)\right\}
$$

Determine the distribution of $\mathbf{X}$.
(b) Let $\mathbf{X}=(X, Y)^{\prime}$ have density function

$$
f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}-2 x y+2 y^{2}\right)\right\}
$$

Determine the distribution of $\mathbf{X}$.

Solution: (a) In this first example, we have used the dummy variables $x$ and $y$ instead of $t_{1}$ and $t_{2}$ just to emphasize the subtle differences between the characteristic function and the density function. Instead, let's write

$$
\varphi_{\mathbf{X}}\left(t_{1}, t_{2}\right)=\exp \left\{-\frac{1}{2}\left(t_{1}^{2}-2 t_{1} t_{2}+2 t_{2}^{2}\right)\right\}
$$

We can easily see that $\mathbf{X}=(X, Y)^{\prime}$ is multivariate normal with mean vector $\boldsymbol{\mu}=(0,0)^{\prime}$ and covariance matrix $\boldsymbol{\Lambda}$ where

$$
\boldsymbol{\Lambda}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

That is, it is easy to read off the covariance matrix from the characteristic function. Note that $\sigma_{x}^{2}=1, \sigma_{y}^{2}=2$, and $\rho=\frac{1}{\sqrt{2}}$.
(b) In the case of the multivariate normal density, it is a little harder to read off the covariance matrix $\boldsymbol{\Lambda}$. However, we can read off $\Lambda^{-1}$ with ease! If

$$
f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}-2 x y+2 y^{2}\right)\right\}
$$

then we see that

$$
\Lambda^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

which implies that

$$
\boldsymbol{\Lambda}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

Note that in this example $\sigma_{x}^{2}=2, \sigma_{y}^{2}=1$, and $\rho=\frac{1}{\sqrt{2}}$.
Example: Let $\mathbf{X}=(X, Y)^{\prime}$ have density function

$$
f_{\mathbf{X}}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}-2 x y+2 y^{2}\right)\right\}, \quad \text { i.e., } \mathbf{X} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right)
$$

The conditional density $Y \mid X=x$ is therefore

$$
f_{Y \mid X=x}(y)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}-2 x y+2 y^{2}\right)\right\}}{\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{2}} \exp \left\{-\frac{1}{2} \cdot \frac{x^{2}}{2}\right\}}
$$

since $X \in N(0,2)$. Therefore,

$$
f_{Y \mid X=x}(y)=\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{\frac{1}{2}}} \exp \left\{-\frac{1}{2} \frac{(y-x / 2)^{2}}{1 / 2}\right\}
$$

so that $Y \left\lvert\, X=x \in N\left(\frac{x}{2}, \frac{1}{2}\right)\right.$.

