Assignment \#9 Solutions
(a) The probability that fewer than two calls come in the first hour is $P\left(T_{2}>1\right)$. However, $\left\{T_{2}>1\right\}=\left\{X_{1}<2\right\}$ so it is equivalent to calculate either $P\left(T_{2}>1\right)$ or $P\left(X_{1}<2\right)$. Since $X_{1} \in \operatorname{Po}(4)$, we find

$$
P\left(X_{1}<2\right)=P\left(X_{1}=0\right)+P\left(X_{1}=1\right)=\frac{4^{0}}{0!} e^{-4}+\frac{4^{1}}{1!} e^{-4}=5 e^{-4}
$$

On the other hand, since $T_{2} \in \Gamma\left(2, \frac{1}{4}\right)$, we compute

$$
P\left(T_{2}>1\right)=\int_{1}^{\infty} \frac{1}{\Gamma(2)} 4^{2} x e^{-4 x} d x=\int_{1}^{\infty} 16 x e^{-4 x} d x=5 e^{-4}
$$

Note that integration by parts with $u=x$ and $d v=16 e^{-4 x}$ gives

$$
\int 16 x e^{-4 x} d x=-4 x e^{-4 x}+\int 4 e^{-4 x} d x=-4 x e^{-4 x}-e^{-4 x}
$$

(b) The probability that at least two calls arrive in the second hour given that six calls arrive in the first hour is

$$
\begin{aligned}
P\left(X_{2} \geq 8 \mid X_{1}=6\right) & =\frac{P\left(X_{2} \geq 8, X_{1}=6\right)}{P\left(X_{1}=6\right)}=\frac{P\left(X_{2}-X_{1} \geq 2, X_{1}=6\right)}{P\left(X_{1}=6\right)} \\
& =\frac{P\left(X_{2}-X_{1} \geq 2\right) P\left(X_{1}=6\right)}{P\left(X_{1}=6\right)}=P\left(X_{2}-X_{1} \geq 2\right)
\end{aligned}
$$

Since $X_{2}-X_{1} \in \operatorname{Po}(4)$, we conclude that

$$
P\left(X_{2}-X_{1} \geq 2\right)=1-P\left(X_{2}-X_{1}<2\right)=1-5 e^{-4}
$$

using our result in (a).
(c) Note that T_{15} is the time that the fifteenth call arrives. Since $T_{15} \in \Gamma\left(15, \frac{1}{4}\right)$, we conclude

$$
E\left(T_{15}\right)=15 \cdot \frac{1}{4}=\frac{15}{4}
$$

Alternatively, since $T_{15}=\tau_{1}+\tau_{2}+\cdots+\tau_{15}$ with $\tau_{i} \in \operatorname{Exp}\left(\frac{1}{4}\right)$, we conclude

$$
E\left(T_{15}\right)=E\left(\tau_{1}\right)+E\left(\tau_{2}\right)+\cdots+E\left(\tau_{15}\right)=\frac{1}{4}+\frac{1}{4}+\cdots+\frac{1}{4}=\frac{15}{4}
$$

(d) The probability that exactly 5 calls arrive in the first hour given that eight calls arrive in the first two hours is given by

$$
\begin{aligned}
P\left(X_{1}=5 \mid X_{2}=8\right)=\frac{P\left(X_{1}=5, X_{2}=8\right)}{P\left(X_{2}=8\right)} & =\frac{P\left(X_{2}-X_{1}=3, X_{1}=5\right)}{P\left(X_{2}=8\right)} \\
& =\frac{P\left(X_{2}-X_{1}=3\right) P\left(X_{1}=5\right)}{P\left(X_{2}=8\right)}
\end{aligned}
$$

Since $X_{2}-X_{1} \in \operatorname{Po}(4)$,

$$
P\left(X_{2}-X_{1}=3\right)=\frac{4^{3}}{3!} e^{-4}
$$

since $X_{1} \in \operatorname{Po}(4)$,

$$
P\left(X_{1}=5\right)=\frac{4^{5}}{5!} e^{-4}
$$

and since $X_{2} \in \operatorname{Po}(8)$,

$$
P\left(X_{2}=8\right)=\frac{8^{8}}{8!} e^{-8}
$$

we can combine everything to conclude

$$
P\left(X_{1}=5 \mid X_{2}=8\right)=\frac{\frac{4^{3}}{3!} e^{-4} \frac{4^{5}}{5!} e^{-4}}{\frac{8^{8}}{8!} e^{-8}}=\frac{8!}{3!5!2^{8}}=\frac{7}{32}
$$

