- If X_{1}, X_{2} are independent $N(0,1)$ random variables, then $Y_{1}=X_{1}-3 X_{2}+2$ is normal with mean $E\left(Y_{1}\right)=E\left(X_{1}\right)-3 E\left(X_{2}\right)+2=2$ and variance $\operatorname{var}\left(Y_{1}\right)=\operatorname{var}\left(X_{1}-3 X_{2}+2\right)=$ $\operatorname{var}\left(X_{1}\right)+9 \operatorname{var}\left(X_{2}\right)-6 \operatorname{cov}\left(X_{1}, X_{2}\right)=1+9-0=10$, and $Y_{2}=2 X_{1}-X_{2}-1$ is normal with mean $E\left(Y_{2}\right)=2 E\left(X_{1}\right)-E\left(X_{2}\right)-1=-1$ and variance $\operatorname{var}\left(Y_{2}\right)=\operatorname{var}\left(2 X_{1}-X_{2}-1\right)=$ $4 \operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)-4 \operatorname{cov}\left(X_{1}, X_{2}\right)=4+1-0=5$. Since $\operatorname{cov}\left(Y_{1}, Y_{2}\right)=\operatorname{cov}\left(X_{1}-3 X_{2}+\right.$ $\left.2,2 X_{1}-X_{2}-1\right)=2 \operatorname{var}\left(X_{1}\right)-7 \operatorname{cov}\left(X_{1}, X_{2}\right)+3 \operatorname{var}\left(X_{2}\right)=2-0+3=5$, we conclude that $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$ is multivariate normal $N(\boldsymbol{\mu}, \boldsymbol{\Lambda})$ where

$$
\boldsymbol{\mu}=\binom{2}{-1} \quad \text { and } \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
10 & 5 \\
5 & 5
\end{array}\right)
$$

- Let

$$
B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
3 \\
4 \\
-3
\end{array}\right)=\binom{0}{8}
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 4 & -2 \\
3 & -2 & 8
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
16 & -2 \\
-2 & 16
\end{array}\right)
$$

- Let

$$
B=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -2 \\
-2 & 0 & 3
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -2 \\
-2 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -2 \\
-2 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & -2 \\
0 & 1 & 0 \\
-1 & -2 & 3
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & -5 \\
4 & 9 & -10 \\
-5 & -10 & 13
\end{array}\right)
$$

- Let

$$
B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

so that $\mathbf{Y}=B \mathbf{X}$. By Theorem 3.1, \mathbf{Y} is MVN with mean

$$
B \boldsymbol{\mu}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

and covariance matrix

$$
B \boldsymbol{\Lambda} B^{\prime}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) .
$$

Exercise 4.2, page 127: If $\phi(t, u)=\exp \left\{i t-2 t^{2}-u^{2}-t u\right\}=\exp \left\{i t-\frac{1}{2}\left(4 t^{2}+2 t u+2 u^{2}\right)\right\}$ then we recognize this as the characteristic function of a normal random variable

$$
\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime} \in N\left(\binom{1}{0},\left(\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right)\right)
$$

Therefore, by Defintion I, $X_{1}+X_{2}$ is normal with mean $E\left(X_{1}\right)+E\left(X_{2}\right)=0+1=1$ and variance $\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)=4+2+2 \cdot 1=8$. That is,

$$
X_{1}+X_{2} \in N(1,8) .
$$

Exercise 5.2, page 129: If $\psi(t, u)=\exp \left\{t^{2}+3 t u+4 u^{2}\right\}=\exp \left\{\frac{1}{2}\left(2 t^{2}+6 t u+8 u^{2}\right)\right\}$ then we recognize this as the moment generating function of a normal random variable

$$
\mathbf{X}=\left(X_{1}, X_{2}\right)^{\prime} \in N\left(\binom{0}{0},\left(\begin{array}{ll}
2 & 3 \\
3 & 8
\end{array}\right)\right) .
$$

Since

$$
\rho=\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \cdot \operatorname{var}(Y)}}=\frac{3}{\sqrt{2 \cdot 8}}=\frac{3}{4},
$$

we conclude that the density function of \mathbf{X} is given by

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{2 \pi \cdot 2 \cdot 8 \cdot \sqrt{1-(3 / 4)^{2}}} \exp \left\{-\frac{1}{2\left(1-(3 / 4)^{2}\right)}\left(\frac{x_{1}^{2}}{4}-2 \frac{3}{4} \frac{x_{1} x_{2}}{2 \cdot 8}+\frac{x_{2}^{2}}{64}\right)\right\} .
$$

Exercise 7.1, page 134: By Definition I, we know that X and $Y-\rho X$ are normally distributed. Therefore, by Theorem 7.1, X and $Y-\rho X$ are independent if and only if $\operatorname{cov}(X, Y-\rho X)=0$. We compute

$$
\begin{aligned}
\operatorname{cov}(X, Y-\rho X)=\operatorname{cov}(X, Y)-\operatorname{cov}(X, \rho X)=\operatorname{cov}(X, Y)-\rho \operatorname{var}(X) & =\rho \mathrm{SD}(X) \mathrm{SD}(Y)-\rho \operatorname{var}(X) \\
& =\rho \operatorname{var}(X)-\rho \operatorname{var}(X)=0
\end{aligned}
$$

since $\mathrm{SD}(X) \cdot \mathrm{SD}(Y)=\mathrm{SD}(X) \cdot \mathrm{SD}(X)=\operatorname{var}(X)$ by the assumption that $\operatorname{var}(X)=\operatorname{var}(Y)$. Hence, X and $Y-\rho X$ are in fact independent.

