
Stat 351 Fall 2006
Assignment #6 Solutions

Problem #3, page 115: If 0 ≤ y ≤ 1/2, then

fY (y) =
∫ 1−y

y
fX(1),X(2)

(y, z) dz =
∫ 1−y

y
2 dz = 2(1− 2y).

On the other hand, if 1/2 ≤ y ≤ 1, then

fY (y) =
∫ y

1−y
fX(1),X(2)

(z, 1− y) dz =
∫ y

1−y
2 dz = 2(2y − 1).

Problem #6, page 115: Since E[F (X(n)) − F (X(1))] = E[F (X(n))] − E[F (X(1))], we compute
each of E[F (X(n))] and E[F (X(1))] separately. Therefore, by definition,

E[F (X(n))] =
∫ ∞

−∞
F (yn)fX(n)

(yn) dyn.

From Theorem IV.1.2, we know that fX(n)
(yn) = n[FX(n)

(yn)]n−1f(yn) so that∫ ∞

−∞
F (yn)fX(n)

(yn) dyn =
∫ ∞

−∞
n[F (yn)]nf(yn) dyn.

Making the substitution u = F (yn) so that du = F ′(yn)dyn = f(yn)dyn gives∫ ∞

−∞
n[F (yn)]nf(yn) dyn =

∫ 1

0
nun du =

n

n + 1
.

Note that since F is a distribution, our new limits of integration are F (−∞) = 0 and F (∞) = 1.
As for E[F (X(1))], using Theorem IV.1.2, we compute

E[F (X(1))] =
∫ ∞

−∞
F (y1)fX(1)

(y1) dy1 =
∫ ∞

−∞
F (y1)n[1− F (y1)]n−1f(y1) dy1.

Making the same substitution as above gives∫ ∞

−∞
F (y1)n[1− F (y1)]n−1f(y1) dy1 =

∫ 1

0
nu(1− u)n−1 du = n

∫ 1

0
(1− v)vn−1 dv = 1− n

n + 1
.

Finally, we combine our two results to conclude that

E[F (X(n))− F (X(1))] =
n

n + 1
−

[
1− n

n + 1

]
=

n− 1
n + 1

.

Problem #9, page 116: (a): If X1 and X2 are independent Exp(a) random variables, then by
Theorem IV.2.1, the joint density of (X(1), X(2)) is given by

fX(1),X(2)
(y1, y2) =

{
2
a2 exp

(
−y1+y2

a

)
, for 0 < y1 < y2 < ∞,

0, otherwise.

Suppose that U = X(1) and let V = X(2) −X(1). Solving for X(1) and X(2) gives

X(1) = U and X(2) = U + V.



The Jacobian of this transformation is given by

J =

∣∣∣∣∣
∂y1

∂u
∂y1

∂v

∂y2

∂u
∂y2

∂v

∣∣∣∣∣ =
∣∣∣∣1 0
1 1

∣∣∣∣ = 1.

Therefore, by Theorem I.2.1, the density of (U, V ) is given by

fU,V (u, v) = fX(1),X(2)
(u, u+v)·|J | = 2

a2
exp

(
−u + u + v

a

)
=

2
a2

exp
(
−2u + v

a

)
=

2
a
e−2u/a·1

a
e−v/a

provided that v > 0 and u > 0. The marginal density of U is

fU (u) =
∫ ∞

−∞
fU,V (u, v) dv =

∫ ∞

0

2
a
e−2u/a · 1

a
e−v/a dv =

2
a
e−2u/a

for u > 0. We recognize that this is the density of an exponential random variable with parameter
a/2; that is, U = X(1) ∈ Exp(a/2). The marginal density of V is

fV (v) =
∫ ∞

−∞
fU,V (u, v) du =

∫ ∞

0

2
a
e−2u/a · 1

a
e−v/a du =

1
a
e−v/a

for v > 0. We recognize that this is the density of an exponential random variable with parameter
a; that is, V = X(2) −X(1) ∈ Exp(a). Since we can express fU,V (u, v) = fU (u) · fV (v) we conclude
that U and V are independent; in other words, X(1) and X(2) −X(1) are independent.

(b): To compute E(X(2)|X(1) = y), we can use properties of conditional expectation (Theo-
rem II.2.2):

E(X(2)|X(1) = y) = E(X(2) −X(1) + X(1)|X(1) = y)

= E(X(2) −X(1)|X(1) = y) + E(X(1)|X(1) = y)

= E(X(2) −X(1)) + y

= a + y

where the first expression after the third equality follows since X(2) −X(1) is independent of X(1)

and the second expression follows since X(1) is “known” when conditioned on the value X(1) = y.

As for E(X(1)|X(2) = x), we need to compute this by definition of conditional expectation. That
is,

fX(1)|X(2)=x(y1) =
fX(1),X(2)

(y1, x)

fX(2)
(x)

=
2
a2 e−y1/a · e−x/a

2
a(1− e−x/a) · e−x/a

=
1
a

e−y1/a

1− e−x/a

provided 0 < y1 < x. This then gives

E(X(1)|X(2) = x) =
∫ ∞

−∞
fX(1)|X(2)=x(y1) dy1 =

∫ x

0

y1

a

e−y1/a

1− e−x/a
dy1 =

1
a(1− e−x/a)

∫ x

0
y1 e−y1/a dy1.

Integrating by parts gives ∫ x

0
y1 e−y1/a dy1 = a2 − a2e−x/a − axe−x/a.



Therefore,

E(X(1)|X(2) = x) =
a2 − a2e−x/a − axe−x/a

a(1− e−x/a)
= a− xe−x/a

1− e−x/a
= a− x

ex/a − 1
.

Problem #10, page 116: Let X1, X2, and X3 are independent, identically distributed U(0, 1)
random variables. Notice that if x > 1/2, then since X(3) > X(1) we conclude

P (X(3) > 1
2 |X(1) = x) = 1.

On the other hand, suppose that 0 ≤ x ≤ 1/2. By equation (3.10) on page 114,

fX(1),X(3)
(y1, y3) = 6(y3 − y1)

provided 0 < y1 < y3 < 1. Therefore, we find

P (X(3) > 1
2 |X(1) = x) =

∫ 1

1/2
fX(1),X(3)

(x, y3) dy3

fX(1)
(x)

.

For the numerator we calculate∫ 1

1/2
fX(1),X(3)

(x, y3) dy3

∫ 1

1/2
6(y3 − x) dy3 = (3y2

3 − 6xy3)
∣∣∣∣1
1/2

=
9
4
− 3x =

3
4
(3− 4x).

As for the denominator, from Remark 3.1 on page 114, we find

fX(1)
(x) = 3(1− x)2

provided 0 < x < 1. Putting these pieces together, we conclude

P (X(3) > 1
2 |X(1) = x) =

3
4(3− 4x)
3(1− x)2

=
(3− 4x)
4(1− x)2

.

That is,

P (X(3) > 1
2 |X(1) = x) =

{
(3−4x)
4(1−x)2

, if 0 ≤ x ≤ 1/2,

1, if x > 1/2.


