Problem \#2, page 55: Suppose that $X+Y=c$. By definition of conditional density,

$$
f_{X \mid X+Y=c}(x)=\frac{f_{X, X+Y}(x, c)}{f_{X+Y}(c)}
$$

We now find the joint density $f_{X, X+Y}(x, c)$. Let $U=X$ and $V=X+Y$ so that $X=U$ and $Y=V-U$. The Jacobian of this transformation is

$$
J=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right|=1
$$

Since X and Y are independent $\operatorname{Exp}(1)$, the joint density of (X, Y) is

$$
f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)= \begin{cases}e^{-x-y}, & \text { for } x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

The joint density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u, v-u) \cdot|J|=e^{-v}
$$

provided that $u>0$ and $v>u$. The marginal density for V is therefore

$$
f_{V}(v)=\int_{0}^{v} e^{-v} d u=v e^{-v}, \quad u>0
$$

Since $V=X+Y$, we can rewrite these densities as $f_{X, X+Y}(x, c)=e^{-c}, 0<x<c$, and $f_{X+Y}(c)=$ $c e^{-c}, c>0$. Finally, we conclude

$$
f_{X \mid X+Y=c}(x)=\frac{f_{X, X+Y}(x, c)}{f_{X+Y}(c)}=\frac{e^{-c}}{c e^{-c}}=\frac{1}{c}
$$

provided that $0<x<c$. That is,

$$
X \mid X+Y=c \in U(0, c)
$$

Problem \#8, page 56: We begin with the observation that

$$
Y_{1} \mid N=n \in \operatorname{Bin}(n, 1 / 2)
$$

Therefore, by the law of total probability, if $y=0,1,2, \ldots$,

$$
P\left(Y_{1}=y\right)=\sum_{n=y}^{\infty} P\left(Y_{1}=y \mid N=n\right) P(N=n)=\sum_{n=y}^{\infty}\binom{n}{y}\left(\frac{1}{2}\right)^{y}\left(\frac{1}{2}\right)^{n-y} \cdot \frac{\lambda^{n} e^{-\lambda}}{n!}
$$

This can be manipulated in exactly the same way as in Example 3.2 on page 42 . Thus, we conclude

$$
P\left(Y_{1}=y\right)=\frac{\lambda^{y}}{2^{y} y!} e^{-\lambda / 2}, \quad \text { i.e., } Y_{1} \in \operatorname{Po}(\lambda / 2)
$$

Next, since $Y_{2}=N-Y_{1}$ we find that

$$
P\left(Y_{2}=y\right)=P\left(N-Y_{1}=y\right)=P\left(Y_{1}=N-y\right)
$$

and so by the law of total probability, if $y=0,1,2, \ldots$,

$$
P\left(Y_{2}=y\right)=\sum_{n=y}^{\infty} P\left(Y_{1}=n-y \mid N=n\right) P(N=n)
$$

But since $Y_{1} \mid N=n \in \operatorname{Bin}(n, 1 / 2)$, we find

$$
P\left(Y_{2}=y\right)=\sum_{n=y}^{\infty}\binom{n}{n-y}\left(\frac{1}{2}\right)^{n-y}\left(\frac{1}{2}\right)^{y} \cdot \frac{\lambda^{n} e^{-\lambda}}{n!}=\frac{\lambda^{y}}{2^{y} y!} e^{-\lambda / 2}, \quad \text { i.e., } Y_{2} \in \operatorname{Po}(\lambda / 2)
$$

which also follows as in Example 3.2 on page 42. In order to show Y_{1} and Y_{2} are independent, we proceed as follows:

$$
\begin{aligned}
P\left(Y_{2}=y_{2} \mid Y_{1}=y_{1}\right)=P\left(N-Y_{1}=y_{2} \mid Y_{1}=y_{1}\right) & =P\left(N+y_{1}+y_{2} \mid Y_{1}=y_{1}\right) \\
& =\frac{P\left(Y_{1}=y_{1} \mid N+y_{1}+y_{2}\right) P\left(N=y_{1}+y_{2}\right)}{P\left(Y_{1}=y_{1}\right)}
\end{aligned}
$$

where the first equality follows since $Y_{2}=N-Y_{1}$ and the last equality follows from Bayes' Theorem. We now know all of the required densities, and so substituting in gives

$$
\begin{aligned}
\frac{P\left(Y_{1}=y_{1} \mid N+y_{1}+y_{2}\right) P\left(N=y_{1}+y_{2}\right)}{P\left(Y_{1}=y_{1}\right)} & =\binom{y_{1}+y_{2}}{y_{1}}\left(\frac{1}{2}\right)^{y_{1}+y_{2}} \frac{e^{-\lambda} \frac{\lambda^{y_{1}+y_{2}}}{\left(y_{1}+y_{2}\right)!}}{e^{-\lambda / 2} \frac{(\lambda / 2)^{y_{1}}}{y_{1}!}} \\
& =e^{-\lambda / 2} \frac{(\lambda / 2)^{y_{2}}}{y_{2}!} \\
& =P\left(Y_{2}=y_{2}\right)
\end{aligned}
$$

That is, $P\left(Y_{2}=y_{2} \mid Y_{1}=y_{1}\right)=P\left(Y_{2}=y_{2}\right)$ and so Y_{1} and Y_{2} are independent.
Problem $\# \mathbf{9}$, page 56: (a) The density function for Y is given by

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}} d x
$$

provided that $0<y<1$. This can be integrated by parts twice to produce

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}} d x=1
$$

That is, $Y \in U(0,1)$. However, a slicker proof uses the gamma function as follows. Let $u=-\frac{x}{y}$ so that $d u=-\frac{1}{y} d x$, from which it follows that

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}} d x=\frac{1}{2} \int_{0}^{\infty} u^{2} e^{-u} d u=\frac{1}{2} \Gamma(3)=\frac{2!}{2}=1
$$

(b) The conditional density of X given $Y=y$ is therefore

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{\frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}}}{1}=\frac{x^{2}}{2 y^{3}} \cdot e^{-\frac{x}{y}}
$$

provided that $x>0$. That is, $X \mid Y=y \in \Gamma(3, y)$.
(c) Since $Y \in U(0,1)$, we know that $E(Y)=\frac{1}{2}$ and $\operatorname{Var}(Y)=\frac{1}{12}$. We also use the fact from page 260 that the mean of a $\Gamma(p, a)$ random variable is $p a$ and the variance is $p a^{2}$. Thus, we find that the mean of X is

$$
E(X)=E(E(X \mid Y))=E(3 Y)=3 E(Y)=\frac{3}{2}
$$

and the variance of X is

$$
\begin{aligned}
\operatorname{Var}(X)=\operatorname{Var}(E(X \mid Y))+E(\operatorname{Var}(X \mid Y)) & =\operatorname{Var}(3 Y)+E\left(3 Y^{2}\right) \\
& =9 \operatorname{Var}(Y)+3 E\left(Y^{2}\right) \\
& =9 \operatorname{Var}(Y)+3\left[\operatorname{Var}(Y)+(E(Y))^{2}\right] \\
& =\frac{9}{12}+3\left(\frac{1}{12}+\frac{1}{4}\right) \\
& =\frac{7}{4} .
\end{aligned}
$$

Problem \#10, page 56: (a) Since

$$
\int_{0}^{1} \int_{0}^{1-x} c x d y d x=c \int_{0}^{1} x(1-x) d x=c\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{c}{6}
$$

we conclude that $c=6$.
(b) The marginal for Y is therefore given by

$$
f_{Y}(y)=\int_{0}^{1-y} 6 x d x=3(1-y)^{2}, \quad 0 \leq y \leq 1
$$

and the marginal for X is

$$
f_{X}(x)=\int_{0}^{1-x} 6 x d y=6 x(1-x), \quad 0 \leq x \leq 1
$$

We conditional densities are then

$$
f_{X \mid Y=y}(x)=\frac{6 x}{3(1-y)^{2}}=\frac{2 x}{(1-y)^{2}}, \quad 0 \leq x \leq 1-y
$$

and

$$
f_{Y \mid X=x}(y)=\frac{6 x}{6 x(1-x)}=\frac{1}{1-x}, \quad 0 \leq y \leq 1-x .
$$

Finally, we find

$$
E(X \mid Y=y)=\int_{0}^{1-y} x \cdot \frac{2 x}{(1-y)^{2}} d x=\frac{2}{3}(1-y)
$$

and

$$
E(Y \mid X=x)=\int_{0}^{1-x} y \cdot \frac{1}{1-x} d y=\frac{1}{2}(1-x)
$$

Problem \#19, page 58: If $X \mid M=m \in \operatorname{Exp}(a)$ with $M^{-1} \in \Gamma(p, a)$, then in order to determine the distribution of X, the first step is to find the density of M. Thus, if $m>0$,

$$
F_{M}(m)=P(M \leq m)=P\left(\frac{1}{M} \geq \frac{1}{m}\right)=\int_{1 / m}^{\infty} f_{1 / M}(x) d x
$$

Taking derivatives with respect to m gives

$$
f_{M}(m)=\frac{1}{m^{2}} f_{1 / M}(1 / m)=\frac{1}{m^{2}} \cdot \frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \cdot m^{1-p} \cdot e^{-1 /(m a)}=\frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \cdot m^{-1-p} \cdot e^{-1 /(m a)}
$$

provided that $m>0$. Therefore, by the law of total probability,

$$
\begin{aligned}
f_{X}(x)=\int_{0}^{\infty} f_{X \mid M=m}(x) f_{M}(m) d m & =\int_{0}^{\infty} \frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \cdot m^{-1-p} \cdot e^{-1 /(m a)} \cdot \frac{1}{m} \cdot e^{-x / m} d m \\
& =\frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \int_{0}^{\infty} m^{-2-p} \cdot e^{-\frac{1}{m}\left(x+\frac{1}{a}\right)} d m
\end{aligned}
$$

Let $u=\frac{1}{m}$ so that $d u=-\frac{1}{m^{2}} d m$ and the integral above becomes

$$
=\frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \int_{0}^{\infty} u^{p} \cdot e^{-u\left(x+\frac{1}{a}\right)} d u
$$

Next let $v=u\left(x+\frac{1}{a}\right)$ so that $d v=\left(x+\frac{1}{a}\right) d u$ and the integral above becomes

$$
=\frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \cdot\left(x+\frac{1}{a}\right)^{-p-1} \int_{0}^{\infty} v^{p} \cdot e^{-v} d v
$$

But

$$
\int_{0}^{\infty} v^{p} \cdot e^{-v} d v=\Gamma(p+1)
$$

and so we conclude, for $x>0$ (and using the fact that $\Gamma(p+1)=p \cdot \Gamma(p))$ that

$$
f_{X}(x)=\frac{1}{\Gamma(p)} \cdot \frac{1}{a^{p}} \cdot\left(x+\frac{1}{a}\right)^{-p-1} \cdot \Gamma(p+1)=\frac{p}{a^{p}} \cdot \frac{1}{\left(x+\frac{1}{a}\right)^{p+1}}
$$

which happens to be the density function of a translated Pareto distribution.

