Problem \#13, page 28: Suppose that $Y \in \chi^{2}(n)$ so that the density of Y is given by

$$
f_{Y}(y)=\frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot y^{n / 2-1} \cdot 2^{-n / 2} \cdot e^{-y / 2}, \quad 0<y<\infty
$$

Let $U=\frac{1}{\sqrt{Y}}$. Since $y>0$, the distribution function of U is given by

$$
F_{U}(u)=P(U \leq u)=P\left(\frac{1}{\sqrt{Y}} \leq u\right)=P\left(Y \geq u^{-2}\right)=\int_{u^{-2}}^{\infty} f_{Y}(y) d y=-\int_{\infty}^{u^{-2}} f_{Y}(y) d y
$$

Taking derivatives with respect to u gives

$$
f_{U}(u)=2 u^{-3} f_{Y}\left(u^{-2}\right)=2 u^{-3} \cdot \frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot u^{2-n} \cdot 2^{-n / 2} \cdot e^{-u^{-2} / 2}=\frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot u^{-n-1} \cdot 2^{1-n / 2} \cdot e^{-1 /\left(2 u^{2}\right)}
$$

for $0<u<\infty$. The mean of U is then given by
$E(U)=\int_{0}^{\infty} u \cdot f_{U}(u) d u=\int_{0}^{\infty} u \cdot \frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot u^{-n-1} \cdot 2^{1-n / 2} \cdot e^{-1 /\left(2 u^{2}\right)} d u=\frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot 2^{1-n / 2} \int_{0}^{\infty} u^{-n} \cdot e^{-1 /\left(2 u^{2}\right)} d u$.
In order to evaluate this integral, we make the substitution $v=u^{-2} / 2$ so that $d v=-u^{-3} d u$. Therefore,
$\int_{0}^{\infty} u^{-n} \cdot e^{-1 /\left(2 u^{2}\right)} d u=\int_{0}^{\infty}(2 v)^{n / 2-3 / 2} \cdot e^{-v} d v=2^{(n-3) / 2} \int_{0}^{\infty} v^{(n-1) / 2-1} \cdot e^{-v} d v=2^{(n-3) / 2} \cdot \Gamma\left(\frac{n-1}{2}\right)$.
That is,

$$
E\left(\frac{1}{\sqrt{Y}}\right)=E(U)=\frac{1}{\Gamma\left(\frac{n}{2}\right)} \cdot 2^{1-n / 2} \cdot 2^{(n-3) / 2} \cdot \Gamma\left(\frac{n-1}{2}\right)=\frac{\Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \cdot \Gamma\left(\frac{n}{2}\right)} .
$$

Problem \#23, page 29: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{(1+x)^{2}(1+x y)^{2}}, & \text { for } x, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=X$ and $V=X Y$ so that solving for X and Y gives

$$
X=U \quad \text { and } \quad Y=V / U
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
-v / u^{2} & 1 / u
\end{array}\right|=\frac{1}{u} .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u, v / u) \cdot|J|=\frac{u}{(1+u)^{2}(1+u \cdot v / u)^{2}} \cdot \frac{1}{u}=\frac{1}{(1+u)^{2}} \cdot \frac{1}{(1+v)^{2}}
$$

provided that $0<u<\infty, 0<v<\infty$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\frac{1}{(1+u)^{2}} \text { for } u>0, \quad \text { and } \quad f_{V}(v)=\frac{1}{(1+v)^{2}} \text { for } v>0
$$

Notice that both U and V have the same distribution, namely $F(2,2)$. (See page 261.)

Problem \#24, page 29: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\frac{2}{(1+x+y)^{3}} & \text { for } x, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Let $U=X+Y$ and $V=\frac{X}{X+Y}$, so that solving for X and Y gives

$$
X=U V \quad \text { and } \quad Y=U-U V
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
1-v & -u
\end{array}\right|=-u .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(u v, u-u v) \cdot|J|=\frac{2}{(1+u v+u-u v)^{3}} \cdot u=\frac{2 u}{(1+u)^{3}}
$$

provided that $0<u<\infty, 0<v<1$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\frac{2 u}{(1+u)^{3}} \text { for } u>0, \quad \text { and } \quad f_{V}(v)=1 \text { for } 0<v<1
$$

Therefore, the density of $X+Y$ is

$$
f_{X+Y}(u)=\frac{2 u}{(1+u)^{3}} \text { for } u>0
$$

(b) Let $U=X-Y$ and $V=X$, so that solving for X and Y gives

$$
X=V \quad \text { and } \quad Y=V-U
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right|=1 .
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}(v, v-u) \cdot|J|=\frac{2}{(1+v+v-u)^{3}} \cdot 1=\frac{2}{(1+2 v-u)^{3}}
$$

provided that $v>u$ and $v>0$ (i.e., $v>\max \{0, u\}$), and $-\infty<u<\infty$. If $u>0$, then $\max \{u, 0\}=u$, and so we calculate

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{u}^{\infty} \frac{2}{(1+2 v-u)^{3}} d v=\left.\frac{1}{2(1+2 v-u)^{2}}\right|_{u} ^{\infty}=\frac{1}{2(1+u)^{2}}
$$

If $u \leq 0$, then $\max \{u, 0\}=0$, and so we calculate

$$
f_{U}(u)=\int_{-\infty}^{\infty} f_{U, V}(u, v) d v=\int_{0}^{\infty} \frac{2}{(1+2 v-u)^{3}} d v=\left.\frac{1}{2(1+2 v-u)^{2}}\right|_{0} ^{\infty}=\frac{1}{2(1-u)^{2}}
$$

Therefore, the density of $X+Y$ is

$$
f_{X+Y}(u)=\frac{1}{2(1+|u|)^{2}} \text { for }-\infty<u<\infty .
$$

Problem \#26, page 30: Suppose that X and Y have joint density

$$
f_{X, Y}(x, y)= \begin{cases}\lambda^{2} e^{-\lambda y}, & \text { for } 0<x<y \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=Y$ and $V=\frac{X}{Y-X}$, so that solving for X and Y gives

$$
X=\frac{U V}{1+V} \quad \text { and } \quad Y=U
$$

The Jacobian of this transformation is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
v(1+v)^{-1} & u(1+v)^{-2} \\
1 & 0
\end{array}\right|=-\frac{u}{(1+v)^{2}}
$$

The density of (U, V) is therefore given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(u v(1+v)^{-1}, u\right) \cdot|J|=\lambda^{2} e^{-\lambda u} \cdot \frac{u}{(1+v)^{2}}=\lambda^{2} u e^{-\lambda u} \cdot \frac{1}{(1+v)^{2}}
$$

provided that $0<u<\infty, 0<v<\infty$. Since we can write the joint density as a product of a function of u only multiplied by a function of v only, we conclude that U and V are independent. That is,

$$
f_{U, V}(u, v)=f_{U}(u) \cdot f_{V}(v)
$$

where

$$
f_{U}(u)=\lambda^{2} u e^{-\lambda u} \text { for } u>0, \quad \text { and } \quad f_{V}(v)=\frac{1}{(1+v)^{2}} \text { for } v>0
$$

Notice that $U \in \Gamma\left(2, \lambda^{-1}\right)$ and that $V \in F(2,2)$. (See pages 260-261.)

