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Solutions to Selected Problems

Problem #3, page 27: Suppose that T ∈ t(n) so that the density of T is given by

fT (x) =
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, −∞ < x < ∞.

Let Y = T 2. If y ≥ 0, then the distribution function of Y is given by

FY (y) = P (Y ≤ y) = P (T 2 ≤ y) = P (−√y ≤ T ≤ √y) =
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Taking derivatives with respect to y gives
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, y ≥ 0.

In order to write this last line, we have used the fact that Γ(1/2) =
√

π. Notice that this is the
density of an F (1, n) random variable. (See page 261.)

Problem #6, page 27: If X ∈ β(1, 1), then the density function of X is

fX(x) =
Γ(1 + 1)
Γ(1)Γ(1)

x1−1(1− x)1−1 = 1, 0 < x < 1.

(We have used the fact that Γ(2) = Γ(1) = 1.) Since the density of X is also that of a uniform
random variable, we conclude X ∈ U(0, 1). Therefore, β(1, 1) = U(0, 1).


