Problem \#3, page 27: Suppose that $T \in t(n)$ so that the density of T is given by

$$
f_{T}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}, \quad-\infty<x<\infty .
$$

Let $Y=T^{2}$. If $y \geq 0$, then the distribution function of Y is given by

$$
\begin{aligned}
F_{Y}(y)=P(Y \leq y)=P\left(T^{2} \leq y\right)=P(-\sqrt{y} \leq T \leq \sqrt{y}) & =\int_{-\sqrt{y}}^{\sqrt{y}} f_{T}(x) d x \\
& =\int_{0}^{\sqrt{y}} f_{T}(x) d x-\int_{0}^{-\sqrt{y}} f_{T}(x) d x
\end{aligned}
$$

Taking derivatives with respect to y gives

$$
\begin{aligned}
f_{Y}(y)=f_{T}(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}-f_{T}(-\sqrt{y}) \cdot \frac{-1}{2 \sqrt{y}} & =\frac{1}{2 \sqrt{y}}\left(f_{T}(\sqrt{y})+f_{T}(-\sqrt{y})\right) \\
& =\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n y} \Gamma\left(\frac{n}{2}\right)} \cdot\left(1+\frac{y}{n}\right)^{-(n+1) / 2} \\
& =\frac{\Gamma\left(\frac{1+n}{2}\right)\left(\frac{1}{n}\right)^{1 / 2}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot \frac{y^{1 / 2-1}}{\left(1+\frac{y}{n}\right)^{(1+n) / 2}}, \quad y \geq 0 .
\end{aligned}
$$

In order to write this last line, we have used the fact that $\Gamma(1 / 2)=\sqrt{\pi}$. Notice that this is the density of an $F(1, n)$ random variable. (See page 261.)

Problem $\# \mathbf{6}$, page 27: If $X \in \beta(1,1)$, then the density function of X is

$$
f_{X}(x)=\frac{\Gamma(1+1)}{\Gamma(1) \Gamma(1)} x^{1-1}(1-x)^{1-1}=1, \quad 0<x<1 .
$$

(We have used the fact that $\Gamma(2)=\Gamma(1)=1$.) Since the density of X is also that of a uniform random variable, we conclude $X \in U(0,1)$. Therefore, $\beta(1,1)=U(0,1)$.

