2. (a) If $X \sim \operatorname{Exp}(2)$, then $F_{X}(x)=1-e^{-x / 2}$ for $x>0$, and if $Y \sim \operatorname{Unif}[0,4]$, then $F_{Y}(y)=\frac{y}{4}$ for $0 \leq y \leq 4$. Since X and Y are independent, we conclude that

$$
F_{X, Y}(x, y)=F_{X}(x) \cdot F_{Y}(y)=\frac{y}{4}\left(1-e^{-x / 2}\right)
$$

for $x>0$ and $0 \leq y \leq 4$.
(b) We find

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y}\left[\frac{y}{4}\left(1-e^{-x / 2}\right)\right]=\frac{1}{4} \cdot \frac{1}{2} e^{-x / 2}
$$

Since $f_{X}(x)=\frac{1}{2} e^{-x / 2}$ and $f_{Y}(y)=\frac{1}{4}$, we see that

$$
\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

as required.
(c) If $Z \sim \mathcal{N}(0,1)$ is independent of X and Y, then the joint density of (X, Y, Z) is given by

$$
f_{X, Y, Z}(z, y, z)=f_{X}(x) \cdot f_{Y}(y) \cdot f_{Z}(z)=\frac{1}{4} \cdot \frac{1}{2} e^{-x / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}=\frac{1}{\sqrt{128 \pi}} e^{-\frac{1}{2}\left(x+z^{2}\right)}
$$

for $x>0,0 \leq y \leq 4$, and $-\infty<z<\infty$.
3. If X and Y are both discrete random variables, and their joint mass function is $p_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\sum_{x^{\prime} \leq x} \sum_{y^{\prime} \leq y} p_{X, Y}\left(x^{\prime}, y^{\prime}\right)
$$

If X and Y are both continuous random variables, and their joint density function is $f_{X, Y}(x, y)$, then

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, v) d v d u
$$

