- (Problem \#10, page 145) Suppose that X_{1} and X_{2} are independent $N(0,1)$ random variables. Set $Y_{1}=X_{1}-3 X_{2}+2$ and $Y_{2}=2 X_{1}-X_{2}-1$. (a) Determine the distributions of Y_{1} and Y_{2}. (b) Determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$.
- (Problem \#11, page 145) Let \mathbf{X} have a three-dimensional normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Λ given by

$$
\boldsymbol{\mu}=\left(\begin{array}{c}
3 \\
4 \\
-3
\end{array}\right) \quad \text { and } \quad \Lambda=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 4 & -2 \\
3 & -2 & 8
\end{array}\right)
$$

respectively. If $Y_{1}=X_{1}+X_{3}$ and $Y_{2}=2 X_{2}$, determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)^{\prime}$.

- (Problem \#13, page 145) Suppose that Y_{1}, Y_{2}, and Y_{3} are independent $N(0,1)$ random variables. Set

$$
\begin{aligned}
& X_{1}=Y_{1}-Y_{3} \\
& X_{2}=2 Y_{1}+Y_{2}-2 Y_{3} \\
& X_{3}=-2 Y_{1}+3 Y_{3}
\end{aligned}
$$

Determine the distribution of $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$.

- (Problem $\# 14$, page 145) Suppose that X_{1}, X_{2}, and X_{3} are independent $N(0,1)$ random variables. Set

$$
\begin{aligned}
& Y_{1}=X_{2}+X_{3}, \\
& Y_{2}=X_{1}+X_{3}, \\
& Y_{3}=X_{1}+X_{2} .
\end{aligned}
$$

Determine the distribution of $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime}$.

- Exercise 4.2, page 127
- Exercise 4.3, page 127 ?
- Exercise 5.2, page 129
- Exercise 5.3, page 129
- Exercise 7.1, page 135

