
Solutions to Math 312 Midterm Exam – November 8, 2013

1. Since i = eπi/2 = eπi/2+2πki for any k ∈ Z, we see that if eζ = i, then ζ ∈ {πi/2 + 2πki :
k ∈ Z}. Hence z ∈ {π/2 + 2πk : k ∈ Z}.

2. Since z�(t) = 3ieit, 0 ≤ t ≤ π/2, by definition we have
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3. (Solution 1.) Observe that
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Since f(z) = z−2 is entire with continuous derivative f �(z) = 1, the Cauchy integral theorem
implies
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(Solution 2.) Observe that f(z) = z2 − 4z + 2 is entire and that 2 is inside C. Thus, by the
Cauchy integral formula,
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5. Since u(x, y) = x2 and v(x, y) = y2, we find

ux(x0, y0) = 2x0, uy(x0, y0) = 0, vx(x0, y0) = 0, vy(x0, y0) = 2y0.

Thus, the Cauchy-Riemann equations are satisfied at z0 = x0 + y0 if and only if x0 = y0.
Since ux, uy, vx and vy are all continuous along the line y0 = x0, we conclude that f(z) is
differentiable for any z0 ∈ {z ∈ C : z = x+ ix} with f �(z0) = ux(x0, y0) + ivx(x0, y0) = 2x0.


