1 (a). Observe that $w^{3}=(\sqrt{3}+i)^{3}=(\sqrt{3})^{3}+3(\sqrt{3})^{2} i+3 i^{2} \sqrt{3}+i^{3}=8 i$ and so

$$
\frac{z}{w^{3}}=\frac{1-i}{8 i}=-\frac{1}{8}-\frac{i}{8}
$$

That is, $a=b=-1 / 8$.
1 (b). Observe that the point $(-1 / 8,-1 / 8) \in \mathbb{R}^{2}$ lies in the third quadrant and makes an angle of $5 \pi / 4$ with the positive x-axis. Therefore, we can write

$$
\frac{z}{w^{3}}=-\frac{1}{8}-\frac{i}{8}=\frac{1}{8} e^{i 5 \pi / 4}=\frac{1}{8} e^{-i 3 \pi / 4}
$$

so that $\operatorname{Arg}\left(z / w^{3}\right)=-3 \pi / 4$.
2. Consider the equation $\zeta^{4}=-i$. Writing $-i=e^{3 i \pi / 2}$ implies that the four values of ζ satisfying $\zeta^{4}=-i$ are $\zeta_{1}=e^{3 i \pi / 8}, \zeta_{2}=e^{7 i \pi / 8}, \zeta_{3}=e^{11 i \pi / 8}, \zeta_{4}=e^{15 i \pi / 8}$. Since $2^{4}=16$, we conclude that the four values of z satisfying $z^{4}=-16 i$ are

$$
\begin{gathered}
z_{1}=2 e^{3 i \pi / 8}=\sqrt{2-\sqrt{2}}+i \sqrt{2+\sqrt{2}}, \quad z_{2}=2 e^{7 i \pi / 8}=-\sqrt{2+\sqrt{2}}+i \sqrt{2-\sqrt{2}} \\
z_{3}=2 e^{11 i \pi / 8}=-\sqrt{2-\sqrt{2}}-i \sqrt{2+\sqrt{2}}, \quad z_{4}=2 e^{15 i \pi / 8}=\sqrt{2+\sqrt{2}}-i \sqrt{2-\sqrt{2}}
\end{gathered}
$$

3. Observe that

$$
f(z)=\frac{2+z}{1+z}=\frac{1+1+z}{1+z}=1+\frac{1}{1+z}=h_{3} \circ h_{2} \circ h_{1}(z)
$$

where $h_{1}(z)=h_{3}(z)=z+1$ and $h_{2}(z)=1 / z$. Let $D_{1}=h_{1}(D)$ so that $D_{1}=\{z \in \mathbb{C}:|z-1|<1\}$. Let $D_{2}=h_{2}\left(D_{1}\right)$. In order to determine D_{2}, suppose that $z \in D_{1}$ and $w=1 / z=u+i v$. Hence,

$$
|z-1|<1 \Longleftrightarrow|1 / w-1|<1 \Longleftrightarrow|1-w|<|w| \Longleftrightarrow(u-1)^{2}+v^{2}<u^{2}+v^{2} \Longleftrightarrow u>1 / 2
$$

and so $D_{2}=\{z \in \mathbb{C}: \operatorname{Re}(z)>1 / 2\}$. Finally, let $D_{3}=h_{3}\left(D_{2}\right)=f(D)$ so that

$$
f(D)=\{z \in \mathbb{C}: \operatorname{Re}(z)>3 / 2\} .
$$

4. Assume that $f(z)$ is analytic with $\operatorname{Re} f(z)=u(z)$. Since $f(z)=u(z)+i v(z)$ is assumed to be analytic, $u(z)$ and $v(z)$ satisfy the Cauchy-Riemann equations at all $z_{0}=x_{0}+i y_{0} \in \mathbb{C}$. Since $u_{x}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)=1+e^{x_{0}} \sin y_{0}$ and $u_{y}\left(z_{0}\right)=u_{y}\left(x_{0}, y_{0}\right)=e^{x_{0}} \cos y_{0}$, the partial derivatives of $v(z)=v(x, y)$ satisfy

$$
v_{y}\left(z_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)=1+e^{x_{0}} \sin y_{0} \quad \text { and } \quad v_{x}\left(z_{0}\right)=v_{x}\left(x_{0}, y_{0}\right)=-e^{x_{0}} \cos y_{0}
$$

Integrating the first expression implies $v\left(x_{0}, y_{0}\right)=y_{0}-e^{x_{0}} \cos y_{0}+c_{1}\left(x_{0}\right)$, whereas integrating the second expression implies $v\left(x_{0}, y_{0}\right)=-e^{x_{0}} \cos y_{0}+c_{2}\left(y_{0}\right)$ where $c_{1}=c_{1}(x)$ is a function of x only and $c_{2}=c_{2}(y)$ is a function of y only. Comparing these two expressions implies that $v\left(x_{0}, y_{0}\right)=y_{0}-e^{x_{0}} \cos y_{0}+c$ for some real constant c. Thus, $f(z)$ is of the form $f(z)=u(z)+i v(z)=$ $x+e^{x} \sin y+i\left(y-e^{x} \cos y+c\right)$. The assumption that $f(0)=i$ implies

$$
f(z)=x+e^{x} \sin y+i\left(y-e^{x} \cos y+2\right)=z-i e^{z}+2 i .
$$

5. Since

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\frac{\Delta z}{\Delta z+i}-0}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{1}{\overline{\Delta z}+i}=\frac{1}{i}=-i
$$

we conclude that $f(z)$ is differentiable at $z_{0}=0$ with $f^{\prime}(0)=-i$.

