Mathematics 312 (Fall 2013) Prof. Michael Kozdron

Lecture #8: Powers and Roots of Algebraic Equations

Example 8.1. Find all values of $z \in \mathbb{C}$ such that $z^n = 1$ where n is a positive integer.

Solution. Note that any solution will necessarily have modulus 1. Therefore, consider $\zeta = e^{i\varphi}$. There are *n* values of φ in $[0, 2\pi)$ for which

$$\zeta^n = e^{in\varphi} = 1$$

holds. In fact, they satisfy

$$n\varphi = 2k\pi, \quad k = 0, 1, \dots, n-1$$

or, equivalently,

$$\varphi = \frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1.$$

Thus, the n solutions are

$$\zeta_1 = e^{i0} = 1, \quad \zeta_2 = e^{i2\pi/n}, \quad \zeta_3 = e^{i4\pi/n}, \quad \dots, \quad \zeta_n = e^{i2(n-1)\pi/n}.$$

We call

$$\{\zeta_1=1,\zeta_2,\ldots,\zeta_n\}$$

the *n* roots of unity.

We can represent the *n* roots of unity as *n* points equally spaces around the circle of radius 1. Note that $\zeta_1 = 1$, and each subsequent root is obtained by rotating the previous root by $2\pi/n$ radians. After *n* rotations, we are back to our starting point.

Exercise 8.2. Determine all values of $z \in \mathbb{C}$ such that $z^5 = 1$.

Answer. $z_1 = 1, z_2 = e^{2\pi i/5}, z_3 = e^{4\pi i/5}, z_4 = e^{6\pi i/5}, z_5 = e^{8\pi i/5}$

Example 8.3. Determine all values of $z \in \mathbb{C}$ satisfying $z^4 = 16$.

Solution. We know that the fourth roots of unity are 1, -1, i, and -i. We know that the fourth root of the positive real number |16| is 2. Thus, the possible fourth roots of the complex variable 16 are

$$\{2, -2, 2i, -2i\}.$$

Example 8.4. Suppose that $w \in \mathbb{C}$ is given. Determine all values of $z \in \mathbb{C}$ such that $z^n = w$.

Solution. Suppose that ζ is one such solution so that $\zeta^n = w$. If we write $w = re^{i\theta}$ and $\zeta = \rho e^{i\varphi}$, then we must have

$$\rho^n e^{in\varphi} = r e^{i\theta}.$$

Since both ρ and r are non-negative real numbers, we must have $\rho = r^{1/n}$. Here we are writing ρ for the unique positive real valued *n*th root of r. Moreover, since

$$\zeta = r^{1/n} e^{i\varphi}$$
 so that $|\zeta| = r^{1/n}$

we see that the solutions lie on the circle of radius $r^{1/n}$. Furthermore, we know that there are n values of $\varphi \in [0, 2\pi)$ for which

 $e^{in\varphi} = e^{i\theta},$

namely

$$n\varphi = \theta + 2k\pi, \quad k = 0, 1, \dots, n-1,$$

or, equivalently,

$$\varphi = \frac{\theta + 2k\pi}{n}, \quad k = 0, 1, \dots, n-1.$$

Thus, the *n* solutions to $z^n = w = re^{i\theta}$ are ζ_1, \ldots, ζ_n where

$$\zeta_k = r^{1/n} e^{i(\theta + 2k\pi)/n}, \quad k = 0, 1, \dots, n-1.$$

Example 8.5. Determine the two values of $z \in \mathbb{C}$ such that $z^2 = 2i$.

Solution. If we write *i* in polar form as $e^{i\pi/2}$, then we conclude that the two complex square roots of *i* are

$$e^{i\pi/4}$$
 and $e^{5i\pi/4}$

Thus, the two required values of z are

$$z_1 = \sqrt{2}e^{i\pi/4} = 1 + i$$
 and $z_2 = \sqrt{2}e^{5i\pi/4} = -1 - i.$