Lecture \#8: Powers and Roots of Algebraic Equations

Example 8.1. Find all values of $z \in \mathbb{C}$ such that $z^{n}=1$ where n is a positive integer.
Solution. Note that any solution will necessarily have modulus 1. Therefore, consider $\zeta=e^{i \varphi}$. There are n values of φ in $[0,2 \pi)$ for which

$$
\zeta^{n}=e^{i n \varphi}=1
$$

holds. In fact, they satisfy

$$
n \varphi=2 k \pi, \quad k=0,1, \ldots, n-1
$$

or, equivalently,

$$
\varphi=\frac{2 k \pi}{n}, \quad k=0,1, \ldots, n-1
$$

Thus, the n solutions are

$$
\zeta_{1}=e^{i 0}=1, \quad \zeta_{2}=e^{i 2 \pi / n}, \quad \zeta_{3}=e^{i 4 \pi / n}, \quad \ldots, \quad \zeta_{n}=e^{i 2(n-1) \pi / n}
$$

We call

$$
\left\{\zeta_{1}=1, \zeta_{2}, \ldots, \zeta_{n}\right\}
$$

the n roots of unity.

Figure 8.1: Geometric representation of the n roots of unity.
We can represent the n roots of unity as n points equally spaces around the circle of radius 1. Note that $\zeta_{1}=1$, and each subsequent root is obtained by rotating the previous root by $2 \pi / n$ radians. After n rotations, we are back to our starting point.

Exercise 8.2. Determine all values of $z \in \mathbb{C}$ such that $z^{5}=1$.
Answer. $z_{1}=1, z_{2}=e^{2 \pi i / 5}, z_{3}=e^{4 \pi i / 5}, z_{4}=e^{6 \pi i / 5}, z_{5}=e^{8 \pi i / 5}$
Example 8.3. Determine all values of $z \in \mathbb{C}$ satisfying $z^{4}=16$.

Solution. We know that the fourth roots of unity are $1,-1, i$, and $-i$. We know that the fourth root of the positive real number $|16|$ is 2 . Thus, the possible fourth roots of the complex variable 16 are

$$
\{2,-2,2 i,-2 i\} .
$$

Example 8.4. Suppose that $w \in \mathbb{C}$ is given. Determine all values of $z \in \mathbb{C}$ such that $z^{n}=w$.

Solution. Suppose that ζ is one such solution so that $\zeta^{n}=w$. If we write $w=r e^{i \theta}$ and $\zeta=\rho e^{i \varphi}$, then we must have

$$
\rho^{n} e^{i n \varphi}=r e^{i \theta}
$$

Since both ρ and r are non-negative real numbers, we must have $\rho=r^{1 / n}$. Here we are writing ρ for the unique positive real valued nth root of r. Moreover, since

$$
\zeta=r^{1 / n} e^{i \varphi} \quad \text { so that } \quad|\zeta|=r^{1 / n}
$$

we see that the solutions lie on the circle of radius $r^{1 / n}$. Furthermore, we know that there are n values of $\varphi \in[0,2 \pi)$ for which

$$
e^{i n \varphi}=e^{i \theta}
$$

namely

$$
n \varphi=\theta+2 k \pi, \quad k=0,1, \ldots, n-1,
$$

or, equivalently,

$$
\varphi=\frac{\theta+2 k \pi}{n}, \quad k=0,1, \ldots, n-1
$$

Thus, the n solutions to $z^{n}=w=r e^{i \theta}$ are $\zeta_{1}, \ldots, \zeta_{n}$ where

$$
\zeta_{k}=r^{1 / n} e^{i(\theta+2 k \pi) / n}, \quad k=0,1, \ldots, n-1 .
$$

Example 8.5. Determine the two values of $z \in \mathbb{C}$ such that $z^{2}=2 i$.
Solution. If we write i in polar form as $e^{i \pi / 2}$, then we conclude that the two complex square roots of i are

$$
e^{i \pi / 4} \text { and } e^{5 i \pi / 4}
$$

Thus, the two required values of z are

$$
z_{1}=\sqrt{2} e^{i \pi / 4}=1+i \quad \text { and } \quad z_{2}=\sqrt{2} e^{5 i \pi / 4}=-1-i .
$$

