Mathematics 312 (Fall 2013) September 18, 2013
Prof. Michael Kozdron

Lecture #7: Applications of Complex Exponentials
Definition. If z = x + iy € C, we define the complex exponential e* as

e” =" = e"e" = ¢"(cosy +isiny).

Note that
e*| = [e*e”| = [e"||e"] = |e”| = e

since |e¥| = |cosy + isiny| = y/cos?y +sin’y = 1 and e* > 0 for z € R. In particular, if
Re(z) <0, then |e*] < 1.

Example 7.1. Express sin® § in terms of sin @ and sin(36).

Solution. We know from de Moivre’s formula that (cos @ +isin )" = cos(nf) +isin(nd) for
any positive integer n and so

sin(30) = Im[(cos @ + isin §)?].

We know from the binomial theorem that
(a+b)" = (") a0

and so
(z +iy)® = 2° + 32 (iy) + 32(iy)* + (iy)® = 2° — 32y* +i(32%y — y*).
Taking x = cosf and y = sin § yields
(cos@ + isinf)® = cos® @ — 3 cosOsin § + (3 cos® § sin ) — sin® 0)
which in turn implies that
sin(36) = 3 cos®fsin§ — sin® 6.
Substituting in sin?§ + cos? § = 1 gives
sin(36) = 3(1 — sin® @) sin @ — sin® § = 3sin @ — 3sin®f — sin® 0 = 3sinh — 4sin” f

so that 3 ]
sin® 0 = 1 sinf — 1 sin(30).
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Example 7.2. Find all values of z € C such that z* = 1.

Solution. Suppose that ¢ is a solution to the equation. We begin by noting that ¢* = 1
implies [¢]* = 1 which in turn implies |{| = 1 so that ¢ lies on the unit circle. Therefore, we
assume that the polar form of ¢ is ( = ¢ and so we need to solve

C4 — 62450 — 610 —1.

However, we know that
¢ = Pt for ke Z.

Since we want ¢ € [0, 27), we conclude that
4p € {0,2m, 47,67} so that ¢ € {0,7/2, 7, 37/2}.
Thus, there are four solutions to z* = 1, namely
G=e"=1 (G=e"?=i (G=¢"=-1, (4=¢%"?=_4

We can plot these solutions in the complex plane.
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Figure 7.1: Geometric representation of solutions to 2* = 1.

Also note that C]‘-l = 1 for each 7 = 1,2,3,4. Therefore, since multiplication of complex
variables of unit modulus corresponds to rotation, we can conclude that the four roots are
related to each other by a rotation of 27/4 = /2 radians.

An equivalent way to think about the problem is as follows. We want to solve z* = 1 and so
we know there will be four solutions. If we write 1 as 1 = €% = 2™ = %™ = 6™ then we
see that the four solutions are

(1= <€0i)1/4 — 0 — 1, G= (e2m‘)1/4 — im/2 i, (3= (e4m‘)1/4 _ eim 1,

and
C4 _ (667Ti)1/4 _ 6i37r/2 = 4.

Example 7.3. Find the three cube roots of 1; that is, determine all values of z € C such
that 22 = 1.
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Solution. Suppose that ¢ = ¢*?. We need to find the three values of ¢ € [0,27) such that

e = 1.

If we write 1 = ¢, then the first value is ¢; = 0 since

€z3go1 _ 610

If we write 1 = €™, then the second value is py = 27/3 since

613902 — 61271—.

If we write 1 = ™ then the third value is 3 = 47/3 since

€z3<p3 — 6127r

Thus, the three solutions are

C1 =1, C? — 6i27r/3’ C3 _ 6i47r/3'

—i27/3

Note that we can write (3 in polar form as (3 = ¢ . It is important to stress that in

cartesian coordinates there is no ambiguity. The three cube roots of 1 are

1 V3 V3
>

=1 = —— -
Cl 3 CQ 2+Z27

1
G=—5
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