Lecture \#7: Applications of Complex Exponentials

Definition. If $z=x+i y \in \mathbb{C}$, we define the complex exponential e^{z} as

$$
e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)
$$

Note that

$$
\left|e^{z}\right|=\left|e^{x} e^{i y}\right|=\left|e^{x}\right|\left|e^{i y}\right|=\left|e^{x}\right|=e^{x}
$$

since $\left|e^{i y}\right|=|\cos y+i \sin y|=\sqrt{\cos ^{2} y+\sin ^{2} y}=1$ and $e^{x}>0$ for $x \in \mathbb{R}$. In particular, if $\operatorname{Re}(z) \leq 0$, then $\left|e^{z}\right| \leq 1$.

Example 7.1. Express $\sin ^{3} \theta$ in terms of $\sin \theta$ and $\sin (3 \theta)$.
Solution. We know from de Moivre's formula that $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for any positive integer n and so

$$
\sin (3 \theta)=\operatorname{Im}\left[(\cos \theta+i \sin \theta)^{3}\right]
$$

We know from the binomial theorem that

$$
(a+b)^{n}=\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}
$$

and so

$$
(x+i y)^{3}=x^{3}+3 x^{2}(i y)+3 x(i y)^{2}+(i y)^{3}=x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right) .
$$

Taking $x=\cos \theta$ and $y=\sin \theta$ yields

$$
(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
$$

which in turn implies that

$$
\sin (3 \theta)=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta
$$

Substituting in $\sin ^{2} \theta+\cos ^{2} \theta=1$ gives

$$
\sin (3 \theta)=3\left(1-\sin ^{2} \theta\right) \sin \theta-\sin ^{3} \theta=3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta=3 \sin \theta-4 \sin ^{3} \theta
$$

so that

$$
\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin (3 \theta) .
$$

nth Roots of a Complex Variable: An Application of Complex Exponentials

Example 7.2. Find all values of $z \in \mathbb{C}$ such that $z^{4}=1$.
Solution. Suppose that ζ is a solution to the equation. We begin by noting that $\zeta^{4}=1$ implies $|\zeta|^{4}=1$ which in turn implies $|\zeta|=1$ so that ζ lies on the unit circle. Therefore, we assume that the polar form of ζ is $\zeta=e^{i \varphi}$ and so we need to solve

$$
\zeta^{4}=e^{i 4 \varphi}=e^{i 0}=1
$$

However, we know that

$$
e^{i \varphi}=e^{i(\varphi+2 k \pi)} \quad \text { for } \quad k \in \mathbb{Z} .
$$

Since we want $\varphi \in[0,2 \pi)$, we conclude that

$$
4 \varphi \in\{0,2 \pi, 4 \pi, 6 \pi\} \quad \text { so that } \varphi \in\{0, \pi / 2, \pi, 3 \pi / 2\}
$$

Thus, there are four solutions to $z^{4}=1$, namely

$$
\zeta_{1}=e^{i 0}=1, \quad \zeta_{2}=e^{i \pi / 2}=i, \quad \zeta_{3}=e^{i \pi}=-1, \quad \zeta_{4}=e^{i 3 \pi / 2}=-i
$$

We can plot these solutions in the complex plane.

Figure 7.1: Geometric representation of solutions to $z^{4}=1$.
Also note that $\zeta_{j}^{4}=1$ for each $j=1,2,3,4$. Therefore, since multiplication of complex variables of unit modulus corresponds to rotation, we can conclude that the four roots are related to each other by a rotation of $2 \pi / 4=\pi / 2$ radians.
An equivalent way to think about the problem is as follows. We want to solve $z^{4}=1$ and so we know there will be four solutions. If we write 1 as $1=e^{0 i}=e^{2 \pi i}=e^{4 \pi i}=e^{6 \pi i}$, then we see that the four solutions are

$$
\zeta_{1}=\left(e^{0 i}\right)^{1 / 4}=e^{i 0}=1, \quad \zeta_{2}=\left(e^{2 \pi i}\right)^{1 / 4}=e^{i \pi / 2}=i, \quad \zeta_{3}=\left(e^{4 \pi i}\right)^{1 / 4}=e^{i \pi}=-1
$$

and

$$
\zeta_{4}=\left(e^{6 \pi i}\right)^{1 / 4}=e^{i 3 \pi / 2}=-i
$$

Example 7.3. Find the three cube roots of 1 ; that is, determine all values of $z \in \mathbb{C}$ such that $z^{3}=1$.

Solution. Suppose that $\zeta=e^{i \varphi}$. We need to find the three values of $\varphi \in[0,2 \pi)$ such that

$$
e^{i 3 \varphi}=1
$$

If we write $1=e^{i 0}$, then the first value is $\varphi_{1}=0$ since

$$
e^{i 3 \varphi_{1}}=e^{i 0}
$$

If we write $1=e^{i 2 \pi}$, then the second value is $\varphi_{2}=2 \pi / 3$ since

$$
e^{i 3 \varphi_{2}}=e^{i 2 \pi}
$$

If we write $1=e^{i 4 \pi}$, then the third value is $\varphi_{3}=4 \pi / 3$ since

$$
e^{i 3 \varphi_{3}}=e^{i 2 \pi}
$$

Thus, the three solutions are

$$
\zeta_{1}=1, \quad \zeta_{2}=e^{i 2 \pi / 3}, \quad \zeta_{3}=e^{i 4 \pi / 3}
$$

Note that we can write ζ_{3} in polar form as $\zeta_{3}=e^{-i 2 \pi / 3}$. It is important to stress that in cartesian coordinates there is no ambiguity. The three cube roots of 1 are

$$
\zeta_{1}=1, \quad \zeta_{2}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad \zeta_{3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

