Lecture \#6: Applications of Complex Exponentials

Recall from last class that we defined the complex exponential $e^{i \theta}$ as

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

Using this we concluded that the polar form of $z \in \mathbb{C}$ can be written as

$$
z=r e^{i \theta}=r(\cos \theta+i \sin \theta)=r \cos \theta+i r \sin \theta
$$

where $r=|z|$ and $\theta=\operatorname{Arg}(z)$. We also proved that $z^{n}=r^{n} e^{i n \theta}$ for any positive integer n. We will now use this to derive de Moivre's formula.

Theorem 6.1 (de Moivre's Formula). If n is a positive integer, then

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Proof. Without loss of generality, assume that $\theta \in(-\pi, \pi]$ and consider $z=\cos \theta+i \sin \theta$ so that the polar form of z is $z=e^{i \theta}$. On the one hand we have

$$
z^{n}=(\cos \theta+i \sin \theta)^{n}
$$

On the other hand we have

$$
z^{n}=\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos (n \theta)+i \sin (n \theta)
$$

Equating the two gives

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

as required.
We now observe that

$$
e^{i \theta}=\cos \theta+i \sin \theta \quad \text { and } \quad e^{-i \theta}=\cos \theta-i \sin \theta
$$

If we solve this system of equations for $\cos \theta$ and $\sin \theta$, then

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Example 6.2. Find an identity for

$$
\begin{equation*}
1+\cos \theta+\cos (2 \theta)+\cdots+\cos (n \theta) \tag{*}
\end{equation*}
$$

where n is a positive integer and $\theta \in \mathbb{R}$. Note that in the study of Fourier series it is important to be able to evaluate such an expression.

Before solving this problem, we need to establish a preliminary result. Recall the formula for a geometric series. If $x \in \mathbb{R}$ with $x \neq 1$, then

$$
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

for any positive integer n. Moreover, if $|x|<1$, then we can let $n \rightarrow \infty$ to obtain

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}
$$

Proposition 6.3. If $z \in \mathbb{C}$ with $z \neq 1$, then

$$
\begin{equation*}
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \tag{**}
\end{equation*}
$$

for any positive integer n.
Proof. Since
$\left(1+z+z^{2}+\cdots+z^{n}\right)(1-z)=\left(1+z+z^{2}+\cdots+z^{n}\right)-\left(z+z^{2}+z^{3}+\cdots+z^{n+1}\right)=1-z^{n+1}$
and $z \neq 1$ we can divide by $(1-z)$ to obtain the result.
Solution. We can now find an identity for $(*)$. If we take $z=e^{i \theta}$ in $(* *)$, we obtain

$$
1+\left(e^{i \theta}\right)+\left(e^{i \theta}\right)^{2}+\cdots+\left(e^{i \theta}\right)^{n}=\frac{1-\left(e^{i \theta}\right)^{n+1}}{1-e^{i \theta}}
$$

or, equivalently,

$$
1+e^{i \theta}+e^{i 2 \theta}+\cdots+e^{i n \theta}=\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}
$$

Taking the real parts of the previous express implies that

$$
1+\cos \theta+\cos (2 \theta)+\cdots+\cos (n \theta)=\operatorname{Re}\left(\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}\right) .
$$

We will now find a simple expression for the right side of the previous equality. Note that

$$
\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}=\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}} \frac{e^{-i \theta / 2}}{e^{-i \theta / 2}}=\frac{e^{i\left(n+\frac{1}{2}\right) \theta}-e^{-i \theta / 2}}{e^{i \theta / 2}-e^{-i \theta / 2}}=\frac{1}{2 i} \frac{e^{i\left(n+\frac{1}{2}\right) \theta}-e^{-i \theta / 2}}{\sin (\theta / 2)} .
$$

Now observe that

$$
\begin{aligned}
e^{i\left(n+\frac{1}{2}\right) \theta}-e^{-i \theta / 2} & =\left[\cos \left(\left(n+\frac{1}{2}\right) \theta\right)+i \sin \left(\left(n+\frac{1}{2}\right) \theta\right)\right]-[\cos (\theta / 2)-i \sin (\theta / 2)] \\
& =\cos \left(\left(n+\frac{1}{2}\right) \theta\right)-\cos (\theta / 2)+i\left[\sin \left(\left(n+\frac{1}{2}\right) \theta\right)+\sin (\theta / 2)\right]
\end{aligned}
$$

and so

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{1-e^{i(n+1) \theta}}{1-e^{i \theta}}\right)=\operatorname{Re}\left[\frac{1}{2 i} \frac{e^{i\left(n+\frac{1}{2}\right) \theta}-e^{-i \theta / 2}}{\sin (\theta / 2)}\right] \\
& =\frac{1}{2 \sin (\theta / 2)} \operatorname{Re}\left[\frac{1}{i}\left(\cos \left(\left(n+\frac{1}{2}\right) \theta\right)-\cos (\theta / 2)+i\left[\sin \left(\left(n+\frac{1}{2}\right) \theta\right)+\sin (\theta / 2)\right]\right)\right] \\
& \quad=\frac{1}{2 \sin (\theta / 2)}\left[\sin \left(\left(n+\frac{1}{2}\right) \theta\right)+\sin (\theta / 2)\right]
\end{aligned}
$$

using the fact that $1 / i=-i$. That is,

$$
1+\cos \theta+\cos (2 \theta)+\cdots+\cos (n \theta)=\frac{\sin \left(\left(n+\frac{1}{2}\right) \theta\right)+\sin (\theta / 2)}{2 \sin (\theta / 2)}
$$

