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Lecture #6: Applications of Complex Exponentials

Recall from last class that we defined the complex exponential eiθ as

eiθ = cos θ + i sin θ.

Using this we concluded that the polar form of z ∈ C can be written as

z = reiθ = r(cos θ + i sin θ) = r cos θ + ir sin θ

where r = |z| and θ = Arg(z). We also proved that zn = rneinθ for any positive integer n.
We will now use this to derive de Moivre’s formula.

Theorem 6.1 (de Moivre’s Formula). If n is a positive integer, then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof. Without loss of generality, assume that θ ∈ (−π, π] and consider z = cos θ+ i sin θ so
that the polar form of z is z = eiθ. On the one hand we have

zn = (cos θ + i sin θ)n.

On the other hand we have

zn = (eiθ)n = einθ = cos(nθ) + i sin(nθ).

Equating the two gives

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

as required.

We now observe that

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ.

If we solve this system of equations for cos θ and sin θ, then

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

Example 6.2. Find an identity for

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) (∗)

where n is a positive integer and θ ∈ R. Note that in the study of Fourier series it is
important to be able to evaluate such an expression.
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Before solving this problem, we need to establish a preliminary result. Recall the formula
for a geometric series. If x ∈ R with x �= 1, then

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x

for any positive integer n. Moreover, if |x| < 1, then we can let n → ∞ to obtain

1 + x+ x2 + x3 + · · · = 1

1− x
.

Proposition 6.3. If z ∈ C with z �= 1, then

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
(∗∗)

for any positive integer n.

Proof. Since

(1+ z+ z2 + · · ·+ zn)(1− z) = (1+ z+ z2 + · · ·+ zn)− (z+ z2 + z3 + · · ·+ zn+1) = 1− zn+1

and z �= 1 we can divide by (1− z) to obtain the result.

Solution. We can now find an identity for (∗). If we take z = eiθ in (∗∗), we obtain

1 + (eiθ) + (eiθ)2 + · · ·+ (eiθ)n =
1− (eiθ)n+1

1− eiθ

or, equivalently,

1 + eiθ + ei2θ + · · ·+ einθ =
1− ei(n+1)θ

1− eiθ
.

Taking the real parts of the previous express implies that

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) = Re

�
1− ei(n+1)θ

1− eiθ

�
.

We will now find a simple expression for the right side of the previous equality. Note that

1− ei(n+1)θ

1− eiθ
=

1− ei(n+1)θ

1− eiθ
e−iθ/2

e−iθ/2
=

ei(n+
1
2 )θ − e−iθ/2

eiθ/2 − e−iθ/2
=

1

2i

ei(n+
1
2 )θ − e−iθ/2

sin(θ/2)
.

Now observe that

ei(n+
1
2 )θ − e−iθ/2 =

�
cos((n+ 1

2)θ) + i sin((n+ 1
2)θ)

�
− [cos(θ/2)− i sin(θ/2)]

= cos((n+ 1
2)θ)− cos(θ/2) + i

�
sin((n+ 1

2)θ) + sin(θ/2)
�
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and so

Re

�
1− ei(n+1)θ

1− eiθ

�
= Re

�
1

2i

ei(n+
1
2 )θ − e−iθ/2

sin(θ/2)

�

=
1

2 sin(θ/2)
Re

�
1
i

�
cos((n+ 1

2)θ)− cos(θ/2) + i
�
sin((n+ 1

2)θ) + sin(θ/2)
�� �

=
1

2 sin(θ/2)

�
sin((n+ 1

2)θ) + sin(θ/2)
�

using the fact that 1/i = −i. That is,

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) =
sin((n+ 1

2)θ) + sin(θ/2)

2 sin(θ/2)
.
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