Lecture \#5: The Complex Exponential Function

Recall that last class we discussed the argument of a complex variable as well as some of the motivation for its definition.

Definition. Suppose that $z=x+i y \in \mathbb{C}, z \neq 0$. Define the argument of z, denoted $\arg z$, to be any solution θ of the pair of equations

$$
\cos \theta=\frac{x}{|z|} \quad \text { and } \quad \sin \theta=\frac{y}{|z|},
$$

and define the principal value of the argument of z, denoted $\operatorname{Arg} z$, to be the unique value of $\arg z \in(-\pi, \pi]$. If $z=0$, we set $\arg 0=\{0, \pm 2 \pi, \pm 4 \pi, \ldots\}$ so that $\operatorname{Arg} 0=0$.

Definition. Suppose that $z \in \mathbb{C}$. We define the polar form of z to be $r e^{i \theta}$ where $r=|z|$ and $\theta=\operatorname{Arg} z$. For convenience, we will write $z=r e^{i \theta}$.

Example 5.1. Write $z=-1-i$ in polar form and identify $\arg z$.
Solution. If $z=-1-i$, then $|z|=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2}=r$. Moreover,

$$
\cos \theta=-\frac{1}{\sqrt{2}} \quad \text { and } \quad \sin \theta=-\frac{1}{\sqrt{2}}
$$

implies that

$$
\theta=\frac{5 \pi}{4}+2 \pi k
$$

for $k \in \mathbb{Z}$. Thus, $\operatorname{Arg} z=-3 \pi / 4$ and
$\arg z=\left\{-\frac{3 \pi}{4},-\frac{3 \pi}{4} \pm 2 \pi,-\frac{3 \pi}{4} \pm 4 \pi, \ldots\right\}=\left\{-\frac{3 \pi}{4}+2 \pi k: k \in \mathbb{Z}\right\}=\left\{\frac{5 \pi}{4}+2 \pi k: k \in \mathbb{Z}\right\}$.
Hence, the polar form of $z=-1-i$ is $\sqrt{2} e^{-3 i \pi / 4}$. Equivalently, we can represent z as an ordered pair $(x, y) \in \mathbb{R}^{2}$ as

$$
(-1,-1)=(\sqrt{2} \cos (-3 \pi / 4), \sqrt{2} \sin (-3 \pi / 4))
$$

Suppose that $z=r e^{i \theta}$ is the polar form of $z \in \mathbb{C}$. As in the previous example, we can write z in cartesian coordinates as $(r \cos \theta, r \sin \theta)$. Using our identification of $(x, y) \in \mathbb{R}^{2}$ with $z=x+i y \in \mathbb{C}$, we conclude that an equivalent representation of z is

$$
z=r \cos \theta+i r \sin \theta
$$

This is also sometimes called the polar form of z.

Definition. Suppose that $z \in \mathbb{C}$. The polar form of z is defined as

$$
z=r \cos \theta+i r \sin \theta=r e^{i \theta}
$$

where $r=|z|$ and $\theta=\operatorname{Arg} z$.
If we take $r=1$ in the definition of polar form, then we conclude that

$$
\cos \theta+i \sin \theta=e^{i \theta}
$$

which leads to the following definition.
Definition. The complex exponential $e^{i \theta}$ is defined as $e^{i \theta}=\cos \theta+i \sin \theta$.
Remark. If we take $\theta=\pi$ in definition of complex exponential, then we have one of the most magical formulas in all of mathematics:

$$
e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+i 0=-1
$$

or equivalently,

$$
e^{i \pi}+1=0
$$

This is Euler's formula relating all five fundamental constants of mathematics!!!! The constant e comes from calculus, π comes from geometry, i comes from algebra, and 1 is the basic unit for generating the arithmetic system from the usual counting numbers.

Properties of the Complex Exponential $e^{i \theta}$

Proposition 5.2. $e^{-i \theta}=\overline{e^{i \theta}}$
Proof. We find

$$
e^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos (\theta)-i \sin (\theta)=\overline{e^{i \theta}}
$$

and the proof is complete.
Proposition 5.3. $\left|e^{i \theta}\right|=1$
Proof. Using the previous proposition, we find

$$
\left|e^{i \theta}\right|=e^{i \theta} e^{i \theta}=e^{i \theta} e^{-i \theta}=(\cos (\theta)+i \sin (\theta))(\cos (\theta)-i \sin (\theta))=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

as required.
Proposition 5.4. $\frac{1}{e^{i \theta}}=e^{-i \theta}$

Proof. We find

$$
\begin{aligned}
\frac{1}{e^{i \theta}}=\frac{1}{\cos (\theta)+i \sin (\theta)}=\frac{1}{\cos (\theta)+i \sin (\theta)} \frac{\cos (\theta)-i \sin (\theta)}{\cos (\theta)-i \sin (\theta)} & =\frac{\cos (\theta)-i \sin (\theta)}{\left|e^{i \theta}\right|} \\
& =\cos (\theta)-i \sin (\theta) \\
& =e^{-i \theta}
\end{aligned}
$$

and the proof is complete.
Proposition 5.5. $e^{i \theta}=e^{i(\theta+2 \pi k)}, k \in \mathbb{Z}$
Proof. Since the real-valued sine and cosine functions are each 2π-periodic, we know that

$$
\cos (\theta)=\cos (\theta+2 \pi k) \quad \text { and } \quad \sin (\theta)=\sin (\theta+2 \pi k)
$$

so that

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)=\cos (\theta+2 \pi k)+i \sin (\theta+2 \pi k)=e^{i(\theta+2 \pi k)}
$$

as required.
Proposition 5.6. $e^{i \theta_{1}} e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$
Proof. By definition,

$$
\begin{aligned}
e^{i \theta_{1}} e^{i \theta_{2}} & =\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right)\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \\
& =\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+i \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+i \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \\
& =\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+i\left(\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)\right) \\
& =\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right) \\
& =e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$

completing the proof.
Proposition 5.7. $\frac{e^{i \theta_{1}}}{e^{i \theta_{2}}}=e^{i\left(\theta_{1}-\theta_{2}\right)}$
Proof. Using our previous propositions, we find

$$
\frac{e^{i \theta_{1}}}{e^{i \theta_{2}}}=e^{i \theta_{1}} e^{-i \theta_{2}}=e^{i \theta_{1}-i \theta_{2}}=e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

as required.
Corollary 5.8. If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

and if $z_{2} \neq 0$, then

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

Exercise 5.9. Prove the previous corollary.

Powers: An Application of Complex Exponentials

Recall that if $a \in \mathbb{R}$ and $n, m \in \mathbb{Z}$, then $\left(a^{n}\right)^{m}=a^{n m}$. In particular, if $x \in \mathbb{R}$, then $\left(e^{x}\right)^{n}=e^{n x}$. As we will now show, this same sort of result is true for the complex exponential.

Theorem 5.10. Let $z=r e^{i \theta}$ be the polar form of the complex variable z. If n is a nonnegative integer, then

$$
z^{n}=r^{n} e^{i n \theta} .
$$

Proof. The proof is by induction. Clearly it is true for $n=1$. If $n=2$, then we find from Corollary 5.8 that

$$
z^{2}=\left(r e^{i \theta}\right)\left(r e^{i \theta}\right)=r^{2} e^{i(\theta+\theta)}=r^{2} e^{i 2 \theta} .
$$

If $n=3$, then

$$
z^{3}=z^{2} z=\left(r^{2} e^{i 2 \theta}\right)\left(r e^{i \theta}\right)=r^{3} e^{i(2 \theta+\theta)}=r^{3} e^{i 3 \theta} .
$$

In general, if $z^{k}=r^{k} e^{i k \theta}$ for some k, then

$$
z^{k+1}=z^{k} z=\left(r^{k} e^{i k \theta}\right)\left(r e^{i \theta}\right)=r^{k+1} e^{i(k \theta+\theta)}=r^{k+1} e^{i(k+1) \theta}
$$

which completes the proof.
Note that this theorem can sometimes be used to simplify multiplication of complex variables.
Example 5.11. Determine the real and imaginary parts of $(-1-i)^{16}$.
Solution. We know that the polar form of $-1-i$ is $\sqrt{2} e^{-3 \pi / 4}$ and so

$$
(-1-i)^{16}=(\sqrt{2})^{16} e^{-16 i(3 \pi / 4)}=2^{8} e^{-12 i \pi}=256\left(e^{i \pi}\right)^{-12}=256(-1)^{-12}=256
$$

using the previous theorem along with Euler's formula. Thus, $\operatorname{Re}\left((-1-i)^{16}\right)=256$ and $\operatorname{Im}\left((-1-i)^{16}\right)=0$.

