Lecture \#4: Polar Form of a Complex Variable

Suppose that $z=x+i y$ is a complex variable. Our goal is to define the polar form of a complex variable. We start by describing how our experience with real variables motivates this definition.
Consider the pair $(x, y) \in \mathbb{R}^{2}$ in cartesian coordinates. We know from Math 213 that an equivalent way to describe a point in the plane is in terms of polar coordinates. That is, we can describe the point (x, y) in terms of its distance r from the origin and the angle the point makes with the positive x-axis. This leads to the change-of-variables

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

where $r \geq 0$ and $0 \leq \theta<2 \pi$. If we try to invert this transformation and solve for r and θ, then we find

$$
r=\sqrt{x^{2}+y^{2}} \text { and } \theta=\arctan (y / x)
$$

The trouble here is that the inverse equation

$$
\theta=\arctan (y / x)
$$

is not true for pairs (x, y) in the second or third quadrants. The reason for this is the convention that the standard interpretation of the arctangent function places its range in the first and fourth quadrants; that is, by convention, the domain of the tangent function is restricted to $(-\pi / 2, \pi / 2)$ in order for the inverse of tangent function to be single-valued. Note the reason for this convention. The only asymptotes of the tangent function on $(-\pi / 2, \pi / 2)$ are at the endpoints. If instead we considered the tangent function on the interval $[0, \pi]$, then we would have the issue that the tangent function is not defined at $\pi / 2$. This would then lead to the domain of the tangent function being $[0, \pi / 2) \cup(\pi / 2, \pi]$ which is ugly. The conclusion is that we cannot define θ simply as $\theta=\arctan (y / x)$.
Thus, when we are working with real variables (in particular in Math 213), we define θ as the unique angle $\theta \in[0,2 \pi)$ satisfying

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

For complex variables, however, we follow a different convention. While it is true that there is a unique angle θ in any half-open half-closed interval of length 2π satisfying

$$
\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}
$$

we must make a convention as to which choice of definite interval we wish to make. We declare $(-\pi, \pi]$ as our convention for complex variables.

Definition. Suppose that $z=x+i y \in \mathbb{C}, z \neq 0$. Define the argument of z, denoted $\arg z$, to be any solution θ of the pair of equations

$$
\cos \theta=\frac{x}{|z|} \quad \text { and } \quad \sin \theta=\frac{y}{|z|}
$$

Note that if θ_{0} qualifies as a value of $\arg z$, then so do

$$
\theta_{0} \pm 2 \pi, \theta_{0} \pm 4 \pi, \theta_{0} \pm 6 \pi, \ldots
$$

Moreover, every value of $\arg z$ must be one of these.
Remark. If $z=0$, then we take, by convention, $\arg 0=\{0, \pm 2 \pi, \pm 4 \pi, \ldots\}$.
However, we still have the problem of multi-valuedness. For definiteness, we will want only a single value of the argument. This leads to the following definition.

Definition. Suppose that $z=x+i y \in \mathbb{C}$. Define the principal value of the argument of z, denoted $\operatorname{Arg} z$, to be the unique value of $\arg z \in(-\pi, \pi]$.

In particular, $\operatorname{Arg} 0=0$.
There is a more sophisticated reason for the convention that $\operatorname{Arg} z \in(-\pi, \pi]$ than just trying to avoid $[0,2 \pi)$. This has to do with the definition of square root. We will want to maintain the convention that the square root of a positive real number is a positive real number. This is easiest to achieve if we choose $\operatorname{Arg} z \in(-\pi, \pi]$. We will be discussing this point in much detail later in the course.

Definition. Suppose that $z \in \mathbb{C}$. We define the polar form of z to be $r e^{i \theta}$ where $r=|z|$ and $\theta=\operatorname{Arg} z$. For convenience, we will write $z=r e^{i \theta}$.

Example 4.1. Write $z=1+i$ in polar form and identify $\arg z$.
Solution. If $z=1+i$, then

$$
|z|=\sqrt{1^{2}+1^{2}}=\sqrt{2}=r .
$$

Moreover,

$$
\cos \theta=\frac{1}{\sqrt{2}} \quad \text { and } \quad \sin \theta=\frac{1}{\sqrt{2}}
$$

implies that

$$
\theta=\frac{\pi}{4}+2 \pi k
$$

for $k \in \mathbb{Z}$. Thus,

$$
\operatorname{Arg} z=\frac{\pi}{4} \quad \text { and } \quad \arg z=\left\{\frac{\pi}{4}, \frac{\pi}{4} \pm 2 \pi, \frac{\pi}{4} \pm 4 \pi, \ldots\right\}=\left\{\frac{\pi}{4}+2 \pi k: k \in \mathbb{Z}\right\}
$$

Hence, the polar form of $z=1+i$ is

$$
\sqrt{2} e^{i \pi / 4}
$$

