Lecture \#3: Geometric Properties of \mathbb{C}

Recall that if $z=a+i b$ is a complex variable, then the modulus of z is $|z|=\sqrt{a^{2}+b^{2}}$ which may be interpreted geometrically as the distance from the origin to the point $(a, b) \in \mathbb{R}^{2}$. Since we can identify the complex variable $z \in \mathbb{C}$ with the point $(a, b) \in \mathbb{R}^{2}$, we conclude that $|z|$ represents the distance from z to the origin.

Example 3.1. Describe the set $\{z \in \mathbb{C}:|z|=1\}$.
Solution. Since $|z|$ represents the distance from the origin, the set $\{z \in \mathbb{C}:|z|=1\}$ represents the set of all points that are at a distance 1 from the origin. This describes all points on the unit circle in the plane; see Figure 3.1.

Figure 3.1: The set $\{z \in \mathbb{C}:|z|=1\}$.
It is possible to derive this result analytically. If we let $z=x+i y$, then $|z|^{2}=x^{2}+y^{2}$. Since $|z|=1$ if and only if $|z|^{2}=1$ if and only if $x^{2}+y^{2}=1$, we conclude that

$$
\{z \in \mathbb{C}:|z|=1\}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

the unit circle.
In general, we see that the set $\{z \in \mathbb{C}:|z|=r\}$ describes a circle of radius r centred at the origin. We can verify this using cartesian coordinates as follows. Suppose that $z=x+i y$ so that $|z|=\sqrt{x^{2}+y^{2}}$. Hence, $|z|=r$ if and only if $|z|^{2}=r^{2}$, or equivalently, if and only if

$$
x^{2}+y^{2}=r^{2} .
$$

Moreover, if $z_{0}, z \in \mathbb{C}$, then one can easily verify that $\left|z-z_{0}\right|$ represents geometrically the distance from z to z_{0}. This means that if $z_{0} \in \mathbb{C}$ is given, then the set

$$
\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}
$$

describes the circle of radius r centred at z_{0}.
Example 3.2. Describe the set $\{z \in \mathbb{C}:|z-i|=2\}$.

Solution. If we write $i=0+i 1$, then we see that i corresponds to the point $(0,1)$ in the plane. Therefore, the set in question represents a circle of radius 2 centred at $(0,1)$.

Figure 3.2: The set $\{z \in \mathbb{C}:|z-i|=2\}$.
Example 3.3. Describe the set of $z \in \mathbb{C}$ satisfying $|z+2|=|z-1|$.
Solution. Geometrically, $|z+2|$ represents the distance from z to -2 , and $|z-1|$ represents the distance from z to 1 . This means that we must find all $z \in \mathbb{C}$ that are equidistant from both -2 and 1 . If we view -2 as the point $(-2,0)$ and 1 as the point $(1,0)$, then we can easily conclude that the point $(-1 / 2,0)$ is halfway between them. Thus, the point $-1 / 2$ belongs to the set $\{z \in \mathbb{C}:|z+2|=|z-1|\}$. However, other points belong to this set. In fact, by drawing an isosceles triangle with altitude along the $\operatorname{Re}(z)=-1 / 2$ line, we conclude that any point on the line $\operatorname{Re}(z)=-1 / 2$ satisfies the condition $|z+2|=|z-1|$. This is described in Figure 3.3.

Figure 3.3: The set $\{z \in \mathbb{C}:|z+2|=|z-1|\}$.
We can derive this result analytically as follows. Let $z=x+i y$ so that the condition $|z+2|=|z-1|$ is equivalent to $|z+2|^{2}=|z-1|^{2}$ which in turn is equivalent to

$$
(x+2)^{2}+y^{2}=(x-1)^{2}+y^{2} .
$$

Now $(x+2)^{2}=(x-1)^{2}$ if and only if $x^{2}+4 x+4=x^{2}-2 x+1$ if and only if $6 x=-3$ which is, of course, equivalent to $x=-1 / 2$.

Example 3.4. Describe the set of $z \in \mathbb{C}$ satisfying $|z-1|=\operatorname{Re}(z)+1$.

Solution. In this case, it is easier to solve the problem analytically. If we write $z=x+i y$, then $|z-1|=\operatorname{Re}(z)+1$ is equivalent to $|z-1|^{2}=(\operatorname{Re}(z)+1)^{2}$ since $|z-1|=\operatorname{Re}(z)+1$ is an equality between non-negative real numbers. Now, $|z-1|^{2}=(x-1)^{2}+y^{2}$ and $(\operatorname{Re}(z)+1)^{2}=(x+1)^{2}$ so that the set described is

$$
(x-1)^{2}+y^{2}=(x+1)^{2} .
$$

Now,

$$
y^{2}=(x+1)^{2}-(x-1)^{2}=[(x+1)+(x-1)][(x+1)-(x-1)]=4 x
$$

(since $(x+1)^{2}-(x-1)^{2}$ is a difference of perfect squares, this is easy to simplify) which represents a parabola parallel to the real axis as shown in Figure 3.4.

Figure 3.4: The parabola $y^{2}=4 x$.
Remark. In high school we do things like solve the equation $|x+2|=|x-1|$ for x. The solutions are points (i.e., real numbers). When we consider the same equation but in complex variables, $|z+2|=|z-1|$, the solution is a curve in the complex plane. We can also see that the real solution, $-1 / 2$ is one of the complex variables solutions of $|z+2|=|z-1|$. However, we could have deduced this from the complex variables result. Here is how.
(1) Consider the real equation that we wish to solve, namely $|x+2|=|x-1|$ for $x \in \mathbb{R}$.
(2) Complexify the equation; that is, replace real variables by complex variables to obtain $|z+2|=|z-1|$ for $z \in \mathbb{C}$.
(3) Determine the solutions to the complex variable problem; in this case, the answer is $\operatorname{Re}(z)=-1 / 2$.
(4) Since the solution must hold for all z satisfying the condition, it must necessarily hold for all $z=x+i 0 \in \mathbb{C}$ satisfying the condition. Thus, we see that the only $z=x+i 0 \in \mathbb{C}$ satisfying $\operatorname{Re}(z)=-1 / 2$ is $z=-1 / 2$, and we conclude that the only solution to $|x+2|=|x-1|$ for $x \in \mathbb{R}$ is $x=-1 / 2$.

We will see many instances of this strategy in this course; in order to solve a real problem it will sometimes be easier to complexify, solve the complex variables problem, and extract the real solutions from the complex solutions.

Example 3.5. Describe the set of $z \in \mathbb{C}$ satisfying $z^{2}+(\bar{z})^{2}=2$.

Solution. Suppose that $z=x+i y$ so that $z^{2}=(x+i y)^{2}=x^{2}-y^{2}+i 2 x y$ and $(\bar{z})^{2}=$ $(x-i y)^{2}=x^{2}-y^{2}-i 2 x y$. This implies

$$
z^{2}+(\bar{z})^{2}=\left(x^{2}-y^{2}+i 2 x y\right)+\left(x^{2}-y^{2}-i 2 x y\right)=2 x^{2}-2 y^{2}
$$

and so the set of $z \in \mathbb{C}$ satisfying $z^{2}+(\bar{z})^{2}=2$ is equivalent to the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2}=1\right\}
$$

which describes a hyperbola as shown in Figure 3.5.

Figure 3.5: The hyperbola $x^{2}-y^{2}=1$.

