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Lecture #3: Geometric Properties of C

Recall that if z = a+ ib is a complex variable, then the modulus of z is |z| =
√
a2 + b2 which

may be interpreted geometrically as the distance from the origin to the point (a, b) ∈ R2.
Since we can identify the complex variable z ∈ C with the point (a, b) ∈ R2, we conclude
that |z| represents the distance from z to the origin.

Example 3.1. Describe the set {z ∈ C : |z| = 1}.

Solution. Since |z| represents the distance from the origin, the set {z ∈ C : |z| = 1}
represents the set of all points that are at a distance 1 from the origin. This describes all
points on the unit circle in the plane; see Figure 3.1.

|z| = 1
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Figure 3.1: The set {z ∈ C : |z| = 1}.

It is possible to derive this result analytically. If we let z = x+ iy, then |z|2 = x2+ y2. Since
|z| = 1 if and only if |z|2 = 1 if and only if x2 + y2 = 1, we conclude that

{z ∈ C : |z| = 1} = {(x, y) ∈ R2 : x2 + y2 = 1},

the unit circle.

In general, we see that the set {z ∈ C : |z| = r} describes a circle of radius r centred at the
origin. We can verify this using cartesian coordinates as follows. Suppose that z = x+ iy so
that |z| =

�
x2 + y2. Hence, |z| = r if and only if |z|2 = r2, or equivalently, if and only if

x2 + y2 = r2.

Moreover, if z0, z ∈ C, then one can easily verify that |z − z0| represents geometrically the
distance from z to z0. This means that if z0 ∈ C is given, then the set

{z ∈ C : |z − z0| = r}

describes the circle of radius r centred at z0.

Example 3.2. Describe the set {z ∈ C : |z − i| = 2}.
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Solution. If we write i = 0 + i1, then we see that i corresponds to the point (0, 1) in the
plane. Therefore, the set in question represents a circle of radius 2 centred at (0, 1).

i

|z − i| = 2
2

Figure 3.2: The set {z ∈ C : |z − i| = 2}.

Example 3.3. Describe the set of z ∈ C satisfying |z + 2| = |z − 1|.

Solution. Geometrically, |z+2| represents the distance from z to −2, and |z−1| represents
the distance from z to 1. This means that we must find all z ∈ C that are equidistant from
both −2 and 1. If we view −2 as the point (−2, 0) and 1 as the point (1, 0), then we can
easily conclude that the point (−1/2, 0) is halfway between them. Thus, the point −1/2
belongs to the set {z ∈ C : |z + 2| = |z − 1|}. However, other points belong to this set. In
fact, by drawing an isosceles triangle with altitude along the Re(z) = −1/2 line, we conclude
that any point on the line Re(z) = −1/2 satisfies the condition |z + 2| = |z − 1|. This is
described in Figure 3.3.

−1/2 1−2

Re(z) = −1/2

Figure 3.3: The set {z ∈ C : |z + 2| = |z − 1|}.

We can derive this result analytically as follows. Let z = x + iy so that the condition
|z + 2| = |z − 1| is equivalent to |z + 2|2 = |z − 1|2 which in turn is equivalent to

(x+ 2)2 + y2 = (x− 1)2 + y2.

Now (x+2)2 = (x− 1)2 if and only if x2+4x+4 = x2− 2x+1 if and only if 6x = −3 which
is, of course, equivalent to x = −1/2.

Example 3.4. Describe the set of z ∈ C satisfying |z − 1| = Re(z) + 1.

3–2



Solution. In this case, it is easier to solve the problem analytically. If we write z = x+ iy,
then |z − 1| = Re(z) + 1 is equivalent to |z − 1|2 = (Re(z) + 1)2 since |z − 1| = Re(z) + 1
is an equality between non-negative real numbers. Now, |z − 1|2 = (x − 1)2 + y2 and
(Re(z) + 1)2 = (x+ 1)2 so that the set described is

(x− 1)2 + y2 = (x+ 1)2.

Now,
y2 = (x+ 1)2 − (x− 1)2 = [(x+ 1) + (x− 1)][(x+ 1)− (x− 1)] = 4x

(since (x + 1)2 − (x − 1)2 is a difference of perfect squares, this is easy to simplify) which
represents a parabola parallel to the real axis as shown in Figure 3.4.

y2 = 4x

Figure 3.4: The parabola y2 = 4x.

Remark. In high school we do things like solve the equation |x + 2| = |x − 1| for x. The
solutions are points (i.e., real numbers). When we consider the same equation but in complex
variables, |z + 2| = |z − 1|, the solution is a curve in the complex plane. We can also see
that the real solution, −1/2 is one of the complex variables solutions of |z + 2| = |z − 1|.
However, we could have deduced this from the complex variables result. Here is how.

(1) Consider the real equation that we wish to solve, namely |x+ 2| = |x− 1| for x ∈ R.

(2) Complexify the equation; that is, replace real variables by complex variables to obtain
|z + 2| = |z − 1| for z ∈ C.

(3) Determine the solutions to the complex variable problem; in this case, the answer is
Re(z) = −1/2.

(4) Since the solution must hold for all z satisfying the condition, it must necessarily
hold for all z = x + i0 ∈ C satisfying the condition. Thus, we see that the only
z = x + i0 ∈ C satisfying Re(z) = −1/2 is z = −1/2, and we conclude that the only
solution to |x+ 2| = |x− 1| for x ∈ R is x = −1/2.

We will see many instances of this strategy in this course; in order to solve a real problem
it will sometimes be easier to complexify, solve the complex variables problem, and extract
the real solutions from the complex solutions.

Example 3.5. Describe the set of z ∈ C satisfying z2 + (z)2 = 2.
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Solution. Suppose that z = x + iy so that z2 = (x + iy)2 = x2 − y2 + i2xy and (z)2 =
(x− iy)2 = x2 − y2 − i2xy. This implies

z2 + (z)2 = (x2 − y2 + i2xy) + (x2 − y2 − i2xy) = 2x2 − 2y2

and so the set of z ∈ C satisfying z2 + (z)2 = 2 is equivalent to the set

{(x, y) ∈ R2 : x2 − y2 = 1}

which describes a hyperbola as shown in Figure 3.5.

x2 − y2 = 1 x2 − y2 = 1

Figure 3.5: The hyperbola x2 − y2 = 1.
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