Lecture #3: Geometric Properties of \mathbb{C}

Recall that if $z = a + ib$ is a complex variable, then the modulus of z is $|z| = \sqrt{a^2 + b^2}$ which may be interpreted geometrically as the distance from the origin to the point $(a, b) \in \mathbb{R}^2$. Since we can identify the complex variable $z \in \mathbb{C}$ with the point $(a, b) \in \mathbb{R}^2$, we conclude that $|z|$ represents the distance from z to the origin.

Example 3.1. Describe the set $\{ z \in \mathbb{C} : |z| = 1 \}$.

Solution. Since $|z|$ represents the distance from the origin, the set $\{ z \in \mathbb{C} : |z| = 1 \}$ represents the set of all points that are at a distance 1 from the origin. This describes all points on the unit circle in the plane; see Figure 3.1.

![Figure 3.1: The set $\{ z \in \mathbb{C} : |z| = 1 \}$](image-url)

It is possible to derive this result analytically. If we let $z = x + iy$, then $|z|^2 = x^2 + y^2$. Since $|z| = 1$ if and only if $|z|^2 = 1$ if and only if $x^2 + y^2 = 1$, we conclude that

$$\{ z \in \mathbb{C} : |z| = 1 \} = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \},$$

the unit circle.

In general, we see that the set $\{ z \in \mathbb{C} : |z| = r \}$ describes a circle of radius r centred at the origin. We can verify this using cartesian coordinates as follows. Suppose that $z = x + iy$ so that $|z| = \sqrt{x^2 + y^2}$. Hence, $|z| = r$ if and only if $|z|^2 = r^2$, or equivalently, if and only if

$$x^2 + y^2 = r^2.$$

Moreover, if $z_0, z \in \mathbb{C}$, then one can easily verify that $|z - z_0|$ represents geometrically the distance from z to z_0. This means that if $z_0 \in \mathbb{C}$ is given, then the set

$$\{ z \in \mathbb{C} : |z - z_0| = r \}$$

describes the circle of radius r centred at z_0.

Example 3.2. Describe the set $\{ z \in \mathbb{C} : |z - i| = 2 \}$.
Solution. If we write $i = 0 + i1$, then we see that i corresponds to the point $(0, 1)$ in the plane. Therefore, the set in question represents a circle of radius 2 centred at $(0, 1)$.

![Figure 3.2: The set \{z ∈ C : |z − i| = 2\}.](image)

Example 3.3. Describe the set of $z ∈ C$ satisfying $|z + 2| = |z − 1|$.

Solution. Geometrically, $|z + 2|$ represents the distance from z to -2, and $|z − 1|$ represents the distance from z to 1. This means that we must find all $z ∈ C$ that are equidistant from both -2 and 1. If we view -2 as the point $(-2, 0)$ and 1 as the point $(1, 0)$, then we can easily conclude that the point $(-1/2, 0)$ is halfway between them. Thus, the point $-1/2$ belongs to the set \{z ∈ C : |z + 2| = |z − 1|\}. However, other points belong to this set. In fact, by drawing an isosceles triangle with altitude along the Re(z) = $-1/2$ line, we conclude that *any* point on the line Re(z) = $-1/2$ satisfies the condition $|z + 2| = |z − 1|$. This is described in Figure 3.3.

![Figure 3.3: The set \{z ∈ C : |z + 2| = |z − 1|\}.](image)

We can derive this result analytically as follows. Let $z = x + iy$ so that the condition $|z + 2| = |z − 1|$ is equivalent to $|z + 2|^2 = |z − 1|^2$ which in turn is equivalent to

$$(x + 2)^2 + y^2 = (x − 1)^2 + y^2.$$

Now $(x + 2)^2 = (x − 1)^2$ if and only if $x^2 + 4x + 4 = x^2 − 2x + 1$ if and only if $6x = −3$ which is, of course, equivalent to $x = −1/2$.

Example 3.4. Describe the set of $z ∈ C$ satisfying $|z − 1| = \text{Re}(z) + 1$.

3-2
Solution. In this case, it is easier to solve the problem analytically. If we write \(z = x + iy \), then \(|z - 1| = \text{Re}(z) + 1 \) is equivalent to \(|z - 1|^2 = (\text{Re}(z) + 1)^2 \) since \(|z - 1| = \text{Re}(z) + 1 \) is an equality between non-negative real numbers. Now, \(|z - 1|^2 = (x - 1)^2 + y^2 \) and \((\text{Re}(z) + 1)^2 = (x + 1)^2 \) so that the set described is

\[
(x - 1)^2 + y^2 = (x + 1)^2.
\]

Now,

\[
y^2 = (x + 1)^2 - (x - 1)^2 = [(x + 1) + (x - 1)][(x + 1) - (x - 1)] = 4x
\]

(since \((x + 1)^2 - (x - 1)^2 \) is a difference of perfect squares, this is easy to simplify) which represents a parabola parallel to the real axis as shown in Figure 3.4.

![Figure 3.4: The parabola \(y^2 = 4x \).](image)

Remark. In high school we do things like solve the equation \(|x + 2| = |x - 1| \) for \(x \). The solutions are points (i.e., real numbers). When we consider the same equation but in complex variables, \(|z + 2| = |z - 1| \), the solution is a curve in the complex plane. We can also see that the real solution, \(-1/2\) is one of the complex variables solutions of \(|z + 2| = |z - 1| \). However, we could have deduced this from the complex variables result. Here is how.

1. Consider the real equation that we wish to solve, namely \(|x + 2| = |x - 1| \) for \(x \in \mathbb{R} \).

2. Complexify the equation; that is, replace real variables by complex variables to obtain \(|z + 2| = |z - 1| \) for \(z \in \mathbb{C} \).

3. Determine the solutions to the complex variable problem; in this case, the answer is \(\text{Re}(z) = -1/2 \).

4. Since the solution must hold for all \(z \) satisfying the condition, it must necessarily hold for all \(z = x + i0 \in \mathbb{C} \) satisfying the condition. Thus, we see that the only \(z = x + i0 \in \mathbb{C} \) satisfying \(\text{Re}(z) = -1/2 \) is \(z = -1/2 \), and we conclude that the only solution to \(|x + 2| = |x - 1| \) for \(x \in \mathbb{R} \) is \(x = -1/2 \).

We will see many instances of this strategy in this course; in order to solve a real problem it will sometimes be easier to complexify, solve the complex variables problem, and extract the real solutions from the complex solutions.

Example 3.5. Describe the set of \(z \in \mathbb{C} \) satisfying \(z^2 + (\overline{z})^2 = 2 \).
Solution. Suppose that \(z = x + iy \) so that \(z^2 = (x + iy)^2 = x^2 - y^2 + i2xy \) and \((\bar{z})^2 = (x - iy)^2 = x^2 - y^2 - i2xy \). This implies

\[
z^2 + (\bar{z})^2 = (x^2 - y^2 + i2xy) + (x^2 - y^2 - i2xy) = 2x^2 - 2y^2
\]

and so the set of \(z \in \mathbb{C} \) satisfying \(z^2 + (\bar{z})^2 = 2 \) is equivalent to the set

\[
\{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 1\}
\]

which describes a hyperbola as shown in Figure 3.5.

![Figure 3.5: The hyperbola \(x^2 - y^2 = 1 \).](image-url)