Lecture \#34: Cauchy Principal Value

Definition. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on $(-\infty, \infty)$. If

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) \mathrm{d} x
$$

exists, then we define the Cauchy principal value of the integral of f over $(-\infty, \infty)$ to be this value, and we write

$$
\text { p.v. } \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) \mathrm{d} x
$$

for the value of this limit.
Remark. If

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x
$$

exists, then

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\text { p.v. } \int_{-\infty}^{\infty} f(x) \mathrm{d} x
$$

However,

$$
\text { p.v. } \int_{-\infty}^{\infty} f(x) \mathrm{d} x
$$

may exist, even though

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x
$$

does not exist. For instance,

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{x}{1+x^{2}} \mathrm{~d} x=0 \text { whereas } \int_{-\infty}^{\infty} \frac{x}{1+x^{2}} \mathrm{~d} x \text { does not exist. }
$$

We can now finish verifying Claim 2 from Example 33.1 of the previous lecture.
Example 33.1 (continued). Recall that we had deduced

$$
\frac{\pi}{3}=\int_{-R}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x+\int_{C_{R}} \frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} \mathrm{d} z
$$

where C_{R} is that part of the circle of radius R in the upper half plane parametrized by $z(t)=R e^{i t}, 0 \leq t \leq \pi$. Taking the limit as $R \rightarrow \infty$ and using Theorem 33.2, we obtained

$$
\frac{\pi}{3}=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

By the definition of the Cauchy principal value, we have actually shown

$$
\frac{\pi}{3}=\text { p.v. } \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

We now observe that

$$
\frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

is an even function so that

$$
\int_{-R}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=2 \int_{0}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

which implies that

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=2 \lim _{R \rightarrow \infty} \int_{0}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

In order to verify that the improper integral actually exists, note that

$$
\left|\int_{0}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x\right|=\int_{0}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x \leq \int_{0}^{R} \frac{1}{x^{2}+1} \mathrm{~d} x=\arctan R
$$

using the inequality $x^{2} \leq\left(x^{2}+4\right)$. Since $\arctan R \rightarrow \pi / 2$ as $R \rightarrow \infty$, we conclude

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

exists by the integral comparison test. Thus,

$$
\frac{\pi}{3}=\text { p.v. } \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=2 \int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x
$$

so that

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} \mathrm{d} x=\frac{\pi}{6} .
$$

Example 34.1. Compute

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{1}{x^{2}+2 x+1} \mathrm{~d} x .
$$

Solution. Suppose that $C=C_{R} \oplus[-R, R]$ denotes the closed contour oriented counterclockwise obtained by concatenating C_{R}, that part of the circle of radius R in the upper half plane parametrized by $z(t)=R e^{i t}, 0 \leq t \leq \pi$, with $[-R, R]$, the line segment along the real axis connecting the point $-R$ to the point R. Suppose further that

$$
f(z)=\frac{1}{z^{2}+2 z+2}
$$

so that $f(z)$ has two simple poles. These occur where

$$
z^{2}+2 z+2=z^{2}+2 z+1+1=(z+1)^{2}+1=0
$$

namely at $z_{1}=i-1$ and $z_{2}=-i-1=-(i+1)$. Note that only z_{1} is inside C, at least for R sufficiently large. Therefore, since

$$
f(z)=\frac{1}{z^{2}+2 z+2}=\frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)},
$$

we conclude that

$$
\operatorname{Res}\left(f ; z_{1}\right)=\left.\frac{1}{z-z_{2}}\right|_{z=z_{1}}=\frac{1}{z_{1}-z_{2}}=\frac{1}{i-1+(i+1)}=\frac{1}{2 i} .
$$

This implies

$$
\int_{C} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z=2 \pi i \frac{1}{2 i}=\pi
$$

so that

$$
\begin{aligned}
\pi=\int_{C} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z & =\int_{[-R, R]} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z+\int_{C_{R}} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z \\
& =\int_{-R}^{R} \frac{1}{x^{2}+2 x+1} \mathrm{~d} x+\int_{C_{R}} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z
\end{aligned}
$$

Taking $R \rightarrow \infty$ yields

$$
\pi=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{1}{x^{2}+2 x+1} \mathrm{~d} x+\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{1}{z^{2}+2 z+2} \mathrm{~d} z=\text { p.v. } \int_{-\infty}^{\infty} \frac{1}{x^{2}+2 x+1} \mathrm{~d} x
$$

using Theorem 33.2 to conclude that the second limit is 0 .

