Mathematics 312 (Fall 2013)
November 25, 2013
Prof. Michael Kozdron

Lecture \#31: The Cauchy Residue Theorem

Recall that last class we showed that a function $f(z)$ has a pole of order m at z_{0} if and only if

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}
$$

for some function $g(z)$ that is analytic in a neighbourhood of z_{0} and has $g\left(z_{0}\right) \neq 0$. We also derived a formula for $\operatorname{Res}\left(f ; z_{0}\right)$.

Theorem 31.1. If $f(z)$ is analytic for $0<\left|z-z_{0}\right|<R$ and has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{0}\right)^{m} f(z)\right|_{z=z_{0}}=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{\mathrm{~d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{0}\right)^{m} f(z)
$$

In particular, if z_{0} is a simple pole, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\left(z-z_{0}\right) f(z)\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Example 31.2. Suppose that

$$
f(z)=\frac{\sin z}{\left(z^{2}-1\right)^{2}}
$$

Determine the order of the pole at $z_{0}=1$.
Solution. Observe that $z^{2}-1=(z-1)(z+1)$ and so

$$
f(z)=\frac{\sin z}{\left(z^{2}-1\right)^{2}}=\frac{\sin z}{(z-1)^{2}(z+1)^{2}}=\frac{\sin z /(z+1)^{2}}{(z-1)^{2}} .
$$

Since

$$
g(z)=\frac{\sin z}{(z+1)^{2}}
$$

is analytic at 1 and $g(1)=2^{-2} \sin (1) \neq 0$, we conclude that $z_{0}=1$ is a pole of order 2 .
Example 31.3. Determine the residue at $z_{0}=1$ of

$$
f(z)=\frac{\sin z}{\left(z^{2}-1\right)^{2}}
$$

and compute

$$
\int_{C} f(z) \mathrm{d} z
$$

where $C=\{|z-1|=1 / 2\}$ is the circle of radius $1 / 2$ centred at 1 oriented counterclockwise.

Solution. Since we can write $(z-1)^{2} f(z)=g(z)$ where

$$
g(z)=\frac{\sin z}{(z+1)^{2}}
$$

is analytic at $z_{0}=1$ with $g(1) \neq 0$, the residue of $f(z)$ at $z_{0}=1$ is

$$
\begin{aligned}
\operatorname{Res}(f ; 1)=\left.\frac{1}{(2-1)!} \frac{\mathrm{d}^{2-1}}{\mathrm{~d} z^{2-1}}(z-1)^{2} f(z)\right|_{z=1} & =\left.\frac{\mathrm{d}}{\mathrm{~d} z}(z-1)^{2} f(z)\right|_{z=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} z} \frac{\sin z}{(z+1)^{2}}\right|_{z=1} \\
& =\left.\frac{(z+1)^{2} \cos z-2(z+1) \sin z}{(z+1)^{4}}\right|_{z=1} \\
& =\frac{4 \cos 1-4 \sin 1}{16} \\
& =\frac{\cos 1-\sin 1}{4}
\end{aligned}
$$

Observe that if $C=\{|z-1|=1 / 2\}$ oriented counterclockwise, then the only singularity of $f(z)$ inside C is at $z_{0}=1$. Therefore,

$$
\int_{C} \frac{\sin z}{\left(z^{2}-1\right)^{2}} \mathrm{~d} z=2 \pi i \operatorname{Res}(f ; 1)=\frac{(\cos 1-\sin 1) \pi i}{2}
$$

It is worth pointing out that we could have also obtained this solution using the Cauchy Integral Formula; that is,

$$
\int_{C} \frac{\sin z}{\left(z^{2}-1\right)^{2}} \mathrm{~d} z=\int_{C} \frac{g(z)}{(z-1)^{2}} \mathrm{~d} z=2 \pi i g^{\prime}(1)=2 \pi i \cdot \frac{\cos 1-\sin 1}{4}=\frac{(\cos 1-\sin 1) \pi i}{2}
$$

as above.
Remark. Suppose that C is a closed contour oriented counterclockwise. If $f(z)$ is analytic inside and on C except for a single point z_{0} where $f(z)$ has a pole of order m, then both the Cauchy Integral Formula and the residue formula will require exactly the same work, namely the calculation of the $m-1$ derivative of $\left(z-z_{0}\right)^{m} f(z)$.

Recall that there are two other types of isolated singular points to consider, namely removable singularities and essential singularities. If the singularity is removable, then the residue is obviously 0 . Unfortunately, there is no direct way to determine the residue associated with an essential singularity. The coefficient a_{-1} of the Laurent series must be determined explicitly.
In summary, suppose that $f(z)$ is analytic for $0<\left|z-z_{0}\right|<R$ and has an isolated singularity at z_{0}. By direct inspection of the function, one may make an educated guess as to whether the isolated singularity is removable, a pole, or essential. If it believed to be either removable or essential, then compute the Laurent series to determine $\operatorname{Res}\left(f ; z_{0}\right)$. If it is believed to be a pole, then attempt to compute $\operatorname{Res}\left(f ; z_{0}\right)$ using Theorem 30.6.

Theorem 31.4 (Cauchy Residue Theorem). Suppose that C is a closed contour oriented counterclockwise. If $f(z)$ is analytic inside and on C except at a finite number of isolated singularities $z_{1}, z_{2}, \ldots, z_{n}$, then

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \sum_{j=1}^{n} \operatorname{Res}\left(f ; z_{j}\right) .
$$

Proof. Observe that if C is a closed contour oriented counterclockwise, then integration over C can be continuously deformed to a union of integrations over $C_{1}, C_{2}, \ldots, C_{n}$ where C_{j} is a circle oriented counterclockwise encircling exactly one isolated singularity, namely z_{j}, and not passing through any of the other isolated singular points. This yields

$$
\int_{C} f(z) \mathrm{d} z=\int_{C_{1}} f(z) \mathrm{d} z+\cdots+\int_{C_{n}} f(z) \mathrm{d} z .
$$

Since

$$
\int_{C_{j}} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f ; z_{j}\right)
$$

the proof is complete.
Remark. Note that if the isolated singularities of $f(z)$ inside C are all either removable or poles, then the Cauchy Integral Formula can also be used to compute

$$
\int_{C} f(z) \mathrm{d} z
$$

If any of the isolated singularities are essential, then the Cauchy Integral Formula does not apply. Moreover, even when $f(z)$ has only removable singularities or poles, the Residue Theorem is often much easier to use than the Cauchy Integral Formula.

Example 31.5. Compute

$$
\int_{C} \frac{3 z^{3}+4 z^{2}-5 z+1}{(z-2 i)\left(z^{3}-z\right)} \mathrm{d} z
$$

where $C=\{|z|=3\}$ is the circle of radius 3 centred at 0 oriented counterclockwise.
Solution. Observe that

$$
f(z)=\frac{3 z^{3}+4 z^{2}-5 z+1}{(z-2 i)\left(z^{3}-z\right)}=\frac{3 z^{3}+4 z^{2}-5 z+1}{z(z-1)(z+1)(z-2 i)}
$$

has isolated singular points at $z_{1}=0, z_{2}=1, z_{3}=-1$, and $z_{4}=2 i$. Moreover, each isolated singularity is a simple pole, and so

$$
\begin{gathered}
\operatorname{Res}(f ; 0)=\left.\frac{3 z^{3}+4 z^{2}-5 z+1}{(z-1)(z+1)(z-2 i)}\right|_{z=0}=\frac{1}{-1 \cdot-2 i}=-\frac{i}{2} \\
\operatorname{Res}(f ; 1)=\left.\frac{3 z^{3}+4 z^{2}-5 z+1}{z(z+1)(z-2 i)}\right|_{z=1}=\frac{3+4-5+1}{1 \cdot 2 \cdot(1-2 i)}=\frac{3}{2(1-2 i)}=\frac{3(1+2 i)}{10},
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{Res}(f ;-1)=\left.\frac{3 z^{3}+4 z^{2}-5 z+1}{z(z-1)(z-2 i)}\right|_{z=-1}=\frac{-3+4+5+1}{-1 \cdot-2 \cdot(-1-2 i)}=-\frac{7}{2(1+2 i)}=\frac{7(2 i-1)}{10} \\
\operatorname{Res}(f ; 2 i)=\left.\frac{3 z^{3}+4 z^{2}-5 z+1}{z(z-1)(z+1)}\right|_{z=2 i}=\frac{3(2 i)^{3}+4(2 i)^{2}-5(2 i)+1}{2 i(2 i-1)(2 i+1)}=\frac{34-15 i}{10}
\end{gathered}
$$

By the Cauchy Residue Theorem,

$$
\int_{C} \frac{3 z^{3}+4 z^{2}-5 z+1}{(z-2 i)\left(z^{3}-z\right)} \mathrm{d} z=2 \pi i\left(-\frac{i}{2}+\frac{3(1+2 i)}{10}+\frac{7(2 i-1)}{10}+\frac{34-15 i}{10}\right)=6 \pi i .
$$

