
Mathematics 312 (Fall 2013) November 25, 2013
Prof. Michael Kozdron

Lecture #31: The Cauchy Residue Theorem

Recall that last class we showed that a function f(z) has a pole of order m at z0 if and only
if

f(z) =
g(z)

(z − z0)m

for some function g(z) that is analytic in a neighbourhood of z0 and has g(z0) �= 0. We also
derived a formula for Res(f ; z0).

Theorem 31.1. If f(z) is analytic for 0 < |z − z0| < R and has a pole of order m at z0,
then

Res(f ; z0) =
1

(m− 1)!

dm−1

dzm−1
(z − z0)

m
f(z)

����
z=z0

=
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)

m
f(z).

In particular, if z0 is a simple pole, then

Res(f ; z0) = (z − z0)f(z)

����
z=z0

= lim
z→z0

(z − z0)f(z).

Example 31.2. Suppose that

f(z) =
sin z

(z2 − 1)2
.

Determine the order of the pole at z0 = 1.

Solution. Observe that z2 − 1 = (z − 1)(z + 1) and so

f(z) =
sin z

(z2 − 1)2
=

sin z

(z − 1)2(z + 1)2
=

sin z/(z + 1)2

(z − 1)2
.

Since

g(z) =
sin z

(z + 1)2

is analytic at 1 and g(1) = 2−2 sin(1) �= 0, we conclude that z0 = 1 is a pole of order 2.

Example 31.3. Determine the residue at z0 = 1 of

f(z) =
sin z

(z2 − 1)2

and compute �

C

f(z) dz

where C = {|z− 1| = 1/2} is the circle of radius 1/2 centred at 1 oriented counterclockwise.
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Solution. Since we can write (z − 1)2f(z) = g(z) where

g(z) =
sin z

(z + 1)2

is analytic at z0 = 1 with g(1) �= 0, the residue of f(z) at z0 = 1 is

Res(f ; 1) =
1

(2− 1)!

d2−1

dz2−1
(z − 1)2f(z)

����
z=1

=
d

dz
(z − 1)2f(z)

����
z=1

=
d

dz

sin z

(z + 1)2

����
z=1

=
(z + 1)2 cos z − 2(z + 1) sin z

(z + 1)4

����
z=1

=
4 cos 1− 4 sin 1

16

=
cos 1− sin 1

4
.

Observe that if C = {|z − 1| = 1/2} oriented counterclockwise, then the only singularity of
f(z) inside C is at z0 = 1. Therefore,

�

C

sin z

(z2 − 1)2
dz = 2πiRes(f ; 1) =

(cos 1− sin 1)πi

2
.

It is worth pointing out that we could have also obtained this solution using the Cauchy
Integral Formula; that is,

�

C

sin z

(z2 − 1)2
dz =

�

C

g(z)

(z − 1)2
dz = 2πig�(1) = 2πi · cos 1− sin 1

4
=

(cos 1− sin 1)πi

2

as above.

Remark. Suppose that C is a closed contour oriented counterclockwise. If f(z) is analytic
inside and on C except for a single point z0 where f(z) has a pole of order m, then both
the Cauchy Integral Formula and the residue formula will require exactly the same work,
namely the calculation of the m− 1 derivative of (z − z0)mf(z).

Recall that there are two other types of isolated singular points to consider, namely removable
singularities and essential singularities. If the singularity is removable, then the residue is
obviously 0. Unfortunately, there is no direct way to determine the residue associated with an
essential singularity. The coefficient a−1 of the Laurent series must be determined explicitly.

In summary, suppose that f(z) is analytic for 0 < |z−z0| < R and has an isolated singularity
at z0. By direct inspection of the function, one may make an educated guess as to whether
the isolated singularity is removable, a pole, or essential. If it believed to be either removable
or essential, then compute the Laurent series to determine Res(f ; z0). If it is believed to be
a pole, then attempt to compute Res(f ; z0) using Theorem 30.6.
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Theorem 31.4 (Cauchy Residue Theorem). Suppose that C is a closed contour oriented
counterclockwise. If f(z) is analytic inside and on C except at a finite number of isolated
singularities z1, z2, . . . , zn, then

�

C

f(z) dz = 2πi
n�

j=1

Res(f ; zj).

Proof. Observe that if C is a closed contour oriented counterclockwise, then integration over
C can be continuously deformed to a union of integrations over C1, C2, . . . , Cn where Cj is
a circle oriented counterclockwise encircling exactly one isolated singularity, namely zj, and
not passing through any of the other isolated singular points. This yields

�

C

f(z) dz =

�

C1

f(z) dz + · · ·+
�

Cn

f(z) dz.

Since �

Cj

f(z) dz = 2πiRes(f ; zj),

the proof is complete.

Remark. Note that if the isolated singularities of f(z) inside C are all either removable or
poles, then the Cauchy Integral Formula can also be used to compute

�

C

f(z) dz.

If any of the isolated singularities are essential, then the Cauchy Integral Formula does not
apply. Moreover, even when f(z) has only removable singularities or poles, the Residue
Theorem is often much easier to use than the Cauchy Integral Formula.

Example 31.5. Compute �

C

3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
dz

where C = {|z| = 3} is the circle of radius 3 centred at 0 oriented counterclockwise.

Solution. Observe that

f(z) =
3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
=

3z3 + 4z2 − 5z + 1

z(z − 1)(z + 1)(z − 2i)

has isolated singular points at z1 = 0, z2 = 1, z3 = −1, and z4 = 2i. Moreover, each isolated
singularity is a simple pole, and so

Res(f ; 0) =
3z3 + 4z2 − 5z + 1

(z − 1)(z + 1)(z − 2i)

����
z=0

=
1

−1 ·−2i
= − i

2
,

Res(f ; 1) =
3z3 + 4z2 − 5z + 1

z(z + 1)(z − 2i)

����
z=1

=
3 + 4− 5 + 1

1 · 2 · (1− 2i)
=

3

2(1− 2i)
=

3(1 + 2i)

10
,
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Res(f ;−1) =
3z3 + 4z2 − 5z + 1

z(z − 1)(z − 2i)

����
z=−1

=
−3 + 4 + 5 + 1

−1 ·−2 · (−1− 2i)
= − 7

2(1 + 2i)
=

7(2i− 1)

10
,

Res(f ; 2i) =
3z3 + 4z2 − 5z + 1

z(z − 1)(z + 1)

����
z=2i

=
3(2i)3 + 4(2i)2 − 5(2i) + 1

2i(2i− 1)(2i+ 1)
=

34− 15i

10
.

By the Cauchy Residue Theorem,

�

C

3z3 + 4z2 − 5z + 1

(z − 2i)(z3 − z)
dz = 2πi

�
− i

2
+

3(1 + 2i)

10
+

7(2i− 1)

10
+

34− 15i

10

�
= 6πi.
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