Lecture \#30: Laurent Series and Residue Theory

A first look at residue theory as an application of Laurent series

One important application of the theory of Laurent series is in the computation of contour integrals. Suppose that $f(z)$ is analytic in the annulus $0<\left|z-z_{0}\right|<R$ so that $f(z)$ has a Laurent series expansion

$$
f(z)=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}+\sum_{j=1}^{\infty} a_{-j}\left(z-z_{0}\right)^{-j}
$$

Let C be any closed contour oriented counterclockwise lying entirely in the annulus and surrounding z_{0} so that

$$
\int_{C} f(z) \mathrm{d} z=\sum_{j=0}^{\infty} a_{j} \int_{C}\left(z-z_{0}\right)^{j} \mathrm{~d} z+\sum_{j=1}^{\infty} a_{-j} \int_{C}\left(z-z_{0}\right)^{-j} \mathrm{~d} z
$$

We know from Theorem 23.2 that

$$
\int_{C}\left(z-z_{0}\right)^{j} \mathrm{~d} z= \begin{cases}2 \pi i, & \text { if } j=-1 \\ 0, & \text { if } j \neq-1\end{cases}
$$

so that

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i a_{-1}
$$

Thus, we see that the coefficient a_{-1} in the Laurent series expansion of $f(z)$ in an annulus of the form $0<\left|z-z_{0}\right|<R$ is of particular importance. In fact, it has a name!

Definition. Suppose that the function $f(z)$ has an isolated singularity at z_{0}. The coefficient a_{-1} of $\left(z-z_{0}\right)^{-1}$ in the Laurent series expansion of $f(z)$ around z_{0} is called the residue of $f(z)$ at z_{0} and is denoted by

$$
a_{-1}=\operatorname{Res}\left(f ; z_{0}\right) .
$$

Classifying isolated singularities

We will now focus on functions that have an isolated singularity at z_{0}. Therefore, suppose that $f(z)$ is analytic in the annulus $0<\left|z-z_{0}\right|<R$ and has an isolated singularity at z_{0}. Consider its Laurent series expansion

$$
f(z)=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}+\sum_{j=1}^{\infty} a_{-j}\left(z-z_{0}\right)^{-j}
$$

We call the part with the negative powers of $\left(z-z_{0}\right)$, namely

$$
\sum_{j=1}^{\infty} a_{-j}\left(z-z_{0}\right)^{-j}
$$

the principal part of the Laurent series. There are three mutually exclusive possibilities for the principal part.
(i) If $a_{j}=0$ for all $j<0$, then we say that z_{0} is a removable singularity of $f(z)$.
(ii) If $a_{-m} \neq 0$ for some $m \in \mathbb{N}$, but $a_{j}=0$ for all $j<-m$, then we say that z_{0} is a pole of order m for $f(z)$.
(iii) If $a_{j} \neq 0$ for infinitely many $j<0$, then we say that z_{0} is an essential singularity of $f(z)$.

Example 30.1. Suppose that

$$
f(z)=\frac{\sin z}{z}
$$

for $|z|>0$. Since the Laurent series expansion of $f(z)$ is

$$
f(z)=\frac{1}{z} \sin z=\frac{1}{z}\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots\right)=1-\frac{z^{2}}{3!}+\frac{z^{4}}{5!}-\frac{z^{6}}{7!}+\cdots,
$$

we conclude that $z_{0}=0$ is a removable singularity.
Example 30.2. Suppose that

$$
f(z)=\frac{e^{z}}{z^{m}}
$$

for $|z|>0$ where m is a positive integer. Since

$$
\begin{aligned}
f(z) & =\frac{1}{z^{m}}\left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right) \\
& =\frac{1}{z^{m}}+\frac{1}{z^{m-1}}+\frac{1}{2!z^{m-2}}+\cdots+\frac{1}{(m-1)!z}+\frac{1}{m!}+\frac{z}{(m+1)!}+\cdots
\end{aligned}
$$

we conclude that $z_{0}=0$ is a pole of order m.
Example 30.3. Suppose that

$$
f(z)=e^{1 / z}
$$

for $|z|>0$. Since

$$
f(z)=e^{1 / z}=1+(1 / z)+\frac{(1 / z)^{2}}{2!}+\frac{(1 / z)^{3}}{3!}+\cdots=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots
$$

we conclude that $z_{0}=0$ is an essential singularity.

Example 30.4. Suppose that $C=\{|z|=1\}$ denotes the unit circle oriented counterclockwise. Compute the following three integrals:
(a) $\int_{C} \frac{\sin z}{z} \mathrm{~d} z$,
(b) $\int_{C} \frac{e^{z}}{z^{m}} \mathrm{~d} z$, where m is a positive integer, and
(c) $\int_{C} e^{1 / z} \mathrm{~d} z$.

Solution. In order to compute all three integrals, we use the fact that $z_{0}=0$ is an isolated singularity so that

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}(f ; 0)
$$

(a) From Example 30.1, we know that $a_{-1}=0$ so that

$$
\int_{C} \frac{\sin z}{z} \mathrm{~d} z=0
$$

(b) From Example 30.2, we know that $a_{-1}=1 /(m-1)$! so that

$$
\int_{C} \frac{e^{z}}{z^{m}} \mathrm{~d} z=\frac{2 \pi i}{(m-1)!}
$$

(c) From Example 30.3, we know that $a_{-1}=1$ so that

$$
\int_{C} e^{1 / z} \mathrm{~d} z=2 \pi i
$$

Note that although we could have used the Cauchy Integral Formula to solve (a) and (b), we could not have used it to solve (c).

Question. Given the obvious importance of the coefficient a_{-1} in a Laurent series, it is natural to ask if there is any way to determine a_{-1} without computing the entire Laurent series.

Theorem 30.5. A function $f(z)$ has a pole of order m at z_{0} if and only if

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}
$$

for some function $g(z)$ that is analytic in a neighbourhood of z_{0} and has $g\left(z_{0}\right) \neq 0$.

Proof. Suppose that $f(z)$ has a pole of order m at z_{0}. By definition, the Laurent series for $f(z)$ has the form

$$
f(z)=\frac{a_{-m}}{\left(z-z_{0}\right)^{m}}+\sum_{j=-(m-1)}^{\infty} a_{j}\left(z-z_{0}\right)^{j}
$$

and so

$$
\left(z-z_{0}\right)^{m} f(z)=a_{-m}+\sum_{j=-(m-1)}^{\infty} a_{j}\left(z-z_{0}\right)^{j+m}=a_{-m}+\sum_{j=1}^{\infty} a_{j-m}\left(z-z_{0}\right)^{j}
$$

Therefore, if we let

$$
g(z)=a_{-m}+\sum_{j=1}^{\infty} a_{j-m}\left(z-z_{0}\right)^{j}
$$

then $g(z)$ is analytic in a neighbourhood of z_{0}. By assumption, $a_{-m} \neq 0$ since $f(z)$ has a pole of order m at z_{0}, and so $g\left(z_{0}\right)=a_{-m} \neq 0$.

Conversely, suppose that

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}
$$

for some function $g(z)$ that is analytic in a neighbourhood of z_{0} and has $g\left(z_{0}\right) \neq 0$. Since $g(z)$ is analytic, it can be expanded in a Taylor series about z_{0}, say

$$
g(z)=b_{0}+b_{1}\left(z-z_{0}\right)+b_{2}\left(z-z_{0}\right)^{2}+\cdots=\sum_{j=0}^{\infty} b_{j}\left(z-z_{0}\right)^{j} .
$$

Since $g\left(z_{0}\right)=b_{0} \neq 0$ by assumption, we obtain

$$
f(z)=\frac{1}{\left(z-z_{0}\right)^{m}} \sum_{j=0}^{\infty} b_{j}\left(z-z_{0}\right)^{j}=\frac{b_{0}}{\left(z-z_{0}\right)^{m}}+\frac{b_{1}}{\left(z-z_{0}\right)^{m-1}}+\cdots
$$

Therefore, by definition, $f(z)$ has a pole of order m at z_{0}.
Now that we know the general form of a function $f(z)$ that has a pole of order m at z_{0}, we can determine a formula for $\operatorname{Res}\left(f ; z_{0}\right)$, the residue of $f(z)$ at z_{0}, as follows.
Suppose that $f(z)$ has a pole of order m at z_{0} so that from Theorem 30.5 we have

$$
f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}
$$

for some function $g(z)$ that is analytic in a neighbourhood of z_{0} and has $g\left(z_{0}\right) \neq 0$. If C is a closed contour oriented counterclockwise containing z_{0} and $f(z)$ is analytic inside and on C except for a pole of order m at z_{0}, then from our Laurent series development we have

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f ; z_{0}\right)
$$

On the other hand, we can apply the Cauchy Integral Formula to conclude

$$
\int_{C} f(z) \mathrm{d} z=\int_{C} \frac{g(z)}{\left(z-z_{0}\right)^{m}} \mathrm{~d} z=2 \pi i \frac{g^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

so equating (\dagger) and (\ddagger) implies

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{g^{(m-1)}\left(z_{0}\right)}{(m-1)!}
$$

Since $g(z)=\left(z-z_{0}\right)^{m} f(z)$, we conclude

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{0}\right)^{m} f(z)\right|_{z=z_{0}}
$$

Theorem 30.6. If $f(z)$ is analytic for $0<\left|z-z_{0}\right|<R$ and has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\frac{1}{(m-1)!} \frac{\mathrm{d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{0}\right)^{m} f(z)\right|_{z=z_{0}}=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{\mathrm{~d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(z-z_{0}\right)^{m} f(z)
$$

In particular, if z_{0} is a simple pole, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\left.\left(z-z_{0}\right) f(z)\right|_{z=z_{0}}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

