Mathematics 312 (Fall 2013) Prof. Michael Kozdron

Lecture #2: Algebraic Properties of \mathbb{C}

Recall that z = a + ib, with $i = \sqrt{-1}$ and $a, b \in \mathbb{R}$, is a complex variable.

Cartesian Representation (or Geometric Interpretation) of Complex Variables

We can represent the complex variable z = a + ib as the point in the plane (a, b) as shown in Figure 2.1.

Figure 2.1: The identification of \mathbb{C} with \mathbb{R}^2 .

Note. In other words, if we let $\mathbb{C} = \{z = a+ib : a, b \in \mathbb{R}\}$ denote the set of complex variables, then we can identify \mathbb{C} with the two-dimensional cartesian plane \mathbb{R}^2 via the identification

$$z = a + ib \in \mathbb{C} \longleftrightarrow (a, b) \in \mathbb{R}^2.$$

This identification is actually an *isomorphism* and so an algebraist might say that \mathbb{C} and \mathbb{R}^2 are *isomorphic* and write $\mathbb{C} \cong \mathbb{R}^2$. We will not be concerned with isomorphisms in this class.

Observe that the distance from the point (a, b) in the plane to the origin (0, 0) is

$$\sqrt{a^2 + b^2}$$

as shown in Figure 2.1. This motivates the following definition.

Definition. Let z = a + ib be a complex variable. The modulus or absolute value of z, denoted |z|, is defined as

$$|z| = \sqrt{a^2 + b^2}.$$

Definition. Let z = a + ib be a complex variable. The *(complex) conjugate* of z, denoted \overline{z} , is defined as

$$\bar{z} = a - ib.$$

Exercise 2.1. Suppose that z is a complex variable. Show that $z\bar{z} = |z|^2$.

Geometrically, conjugation represents reflection in the real axis; see Figure 2.2.

Figure 2.2: Geometric representation of complex conjugation.

Proposition 2.2. If z = a + ib is a complex variable, then $\sqrt{z \overline{z}}$ is a real number.

Proof. Observe that

$$z \,\overline{z} = (a+ib)(a-ib) = a^2 + b^2 = |z|^2$$

Since $|z|^2 = z \overline{z}$ is necessarily real and non-negative we can take square roots to obtain

$$\sqrt{z\,\overline{z}} = |z| = \sqrt{a^2 + b^2} \in \mathbb{R}$$

as required.

Proposition 2.3. If $z_1, z_2 \in \mathbb{C}$, then $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$.

Proof. Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ so that

$$z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1 a_2 - b_1 b_2) + i(b_1 a_2 + a_1 b_2)$$

implying that

$$\overline{z_1 z_2} = (a_1 a_2 - b_1 b_2) - i(b_1 a_2 + a_1 b_2).$$

On the other hand,

$$\overline{z_1} \, \overline{z_2} = (a_1 - ib_1)(a_2 - ib_2) = a_1a_2 - b_1b_2 - ib_1a_2 - ia_1b_2 = (a_1a_2 - b_1b_2) - i(b_1a_2 + a_1b_2)$$

as well, and the proof is complete.

Exercise 2.4. Let $z_1, z_2 \in \mathbb{C}$. Show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.

Exercise 2.5. Let $z \in \mathbb{C}$. Show that $\overline{(\overline{z})} = z$.

Before proving the next proposition, we observe the geometric interpretation of |z|, $\operatorname{Re}(z)$, and $\operatorname{Im}(z)$ as shown in Figure 2.3 below.

Figure 2.3: Geometric interpretation of |z|, $\operatorname{Re}(z)$, and $\operatorname{Im}(z)$.

Proposition 2.6. If $z \in \mathbb{C}$, then

- (a) $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z}),$
- **(b)** $\text{Im}(z) = \frac{1}{2i}(z \overline{z}),$
- (c) $\operatorname{Re}(z) \leq |z|$, and
- (d) $\text{Im}(z) \le |z|$.

Proof. Let z = a + ib so that $\overline{z} = a - ib$. Solving the system of equations

z = a + ib and $\overline{z} = a - ib$

for a and b gives

$$a = \frac{1}{2}(z + \overline{z})$$
 and $b = \frac{1}{2i}(z - \overline{z}).$

Moreover, since $|z| = \sqrt{a^2 + b^2}$, we see that

$$\operatorname{Re}(z) = a \le \sqrt{a^2 + b^2} = |z|$$
 and $\operatorname{Im}(z) = b \le \sqrt{a^2 + b^2} = |z|$

as required.

Proposition 2.7. If $z \in \mathbb{C}$, then $|\overline{z}| = |z|$.

Proof. Let z = a + ib so that $\overline{z} = a - ib$. Note that

$$|\overline{z}| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2} = |z|$$

as required.

Geometrically this proposition says that length doesn't change under a reflection through the real axis; see Figure 2.4.

Figure 2.4: Geometric interpretation of $|\overline{z}| = |z|$.

Proposition 2.8. If z_1 , z_2 are complex variables, then $|z_1z_2| = |z_1||z_2|$.

Proof. Recall that $|w|^2 = w \overline{w}$ for any $w \in \mathbb{C}$. Let $w = z_1 z_2$ so that

$$|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = z_1 z_2(\overline{z_1} \overline{z_2}) = z_1(z_2 \overline{z_1})\overline{z_2} = z_1(\overline{z_1} z_2)\overline{z_2} = (z_1 \overline{z_1})(z_2 \overline{z_2}) = |z_1|^2 |z_2|^2$$

using Proposition 2.3, the Associative Law twice, and the Commutative Law. Since the moduli in question are non-negative real numbers we can take square roots to obtain

$$|z_1 z_2| = |z_1| |z_2|$$

as required.

Proposition 2.9. If z_1 , z_2 are complex variables with $z_2 \neq 0$, then

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z_2}}{|z_2|^2}.$$

Proof. Observe that

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{z_2}{\overline{z_2}} = \frac{z_1 z_2}{|z_2|^2}$$

as required.

Theorem 2.10 (Triangle Inequality). If z_1 , z_2 are complex variables, then

$$|z_1 + z_2| \le |z_1| + |z_2|.$$

Proof. Recall that $|w|^2 = w \overline{w}$ for any $w \in \mathbb{C}$. Taking $w = z_1 + z_2$ implies

$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = (z_1 + z_2)(\overline{z_1} + \overline{z_2}) = z_1 \overline{z_1} + z_2 \overline{z_1} + z_1 \overline{z_2} + z_2 \overline{z_2}$$
$$= |z_1|^2 + |z_2|^2 + z_2 \overline{z_1} + z_1 \overline{z_2}$$

using Exercise 2.4 and the Distributive Law. The next step is to deal with $z_2 \overline{z_1} + z_1 \overline{z_2}$. Recall that $2 \operatorname{Re}(w) = w + \overline{w}$. If we take $w = z_1 \overline{z_2}$, then

$$\overline{w} = \overline{z_1 \, \overline{z_2}} = \overline{z_1} \, \overline{(\overline{z_2})} = \overline{z_1} \, z_2$$

using Proposition 2.3 and Exercise 2.5, and so we see that

$$z_2 \overline{z_1} + z_1 \overline{z_2} = \overline{w} + w = 2 \operatorname{Re}(w) = 2 \operatorname{Re}(z_1 \overline{z_2}).$$

However, we also know from Proposition 2.6 that $\operatorname{Re}(w) \leq |w|$ which implies that

$$\operatorname{Re}(z_1 \,\overline{z_2}) \le |z_1 \,\overline{z_2}| = |z_1||\overline{z_2}| = |z_1||z_2|.$$

Therefore, we conclude that

$$|z_1 + z_2|^2 \le |z_1|^2 + |z_2|^2 + 2|z_1||z_2| = (|z_1| + |z_2|)^2.$$

Since both sides of the inequality involve only non-negative real numbers, we can take square roots to obtain

$$|z_1 + z_2| \le |z_1| + |z_2|$$

as required.