
Mathematics 312 (Fall 2013) September 6, 2013
Prof. Michael Kozdron

Lecture #2: Algebraic Properties of C

Recall that z = a+ ib, with i =
√
−1 and a, b ∈ R, is a complex variable.

Cartesian Representation (or Geometric Interpretation) of Complex Variables

We can represent the complex variable z = a + ib as the point in the plane (a, b) as shown
in Figure 2.1.

y-axis or imaginary axis

(a, b)

√
a2 + b2

(0, 0) x-axis or real axis

Figure 2.1: The identification of C with R2.

Note. In other words, if we let C = {z = a+ib : a, b ∈ R} denote the set of complex variables,
then we can identify C with the two-dimensional cartesian plane R2 via the identification

z = a+ ib ∈ C ←→ (a, b) ∈ R2.

This identification is actually an isomorphism and so an algebraist might say that C and
R2 are isomorphic and write C ∼= R2. We will not be concerned with isomorphisms in this
class.

Observe that the distance from the point (a, b) in the plane to the origin (0, 0) is
√
a2 + b2

as shown in Figure 2.1. This motivates the following definition.

Definition. Let z = a + ib be a complex variable. The modulus or absolute value of z,
denoted |z|, is defined as

|z| =
√
a2 + b2.

Definition. Let z = a + ib be a complex variable. The (complex) conjugate of z, denoted
z̄, is defined as

z̄ = a− ib.
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Exercise 2.1. Suppose that z is a complex variable. Show that zz̄ = |z|2.

Geometrically, conjugation represents reflection in the real axis; see Figure 2.2.

z = (a, b)

z = (a,−b)

Figure 2.2: Geometric representation of complex conjugation.

Proposition 2.2. If z = a+ ib is a complex variable, then
√
z z is a real number.

Proof. Observe that
z z = (a+ ib)(a− ib) = a2 + b2 = |z|2.

Since |z|2 = z z is necessarily real and non-negative we can take square roots to obtain

√
z z = |z| =

√
a2 + b2 ∈ R

as required.

Proposition 2.3. If z1, z2 ∈ C, then z1z2 = z1 z2.

Proof. Let z1 = a1 + ib1 and z2 = a2 + ib2 so that

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(b1a2 + a1b2)

implying that
z1z2 = (a1a2 − b1b2)− i(b1a2 + a1b2).

On the other hand,

z1 z2 = (a1 − ib1)(a2 − ib2) = a1a2 − b1b2 − ib1a2 − ia1b2 = (a1a2 − b1b2)− i(b1a2 + a1b2)

as well, and the proof is complete.

Exercise 2.4. Let z1, z2 ∈ C. Show that z1 + z2 = z1 + z2.
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Exercise 2.5. Let z ∈ C. Show that (z) = z.

Before proving the next proposition, we observe the geometric interpretation of |z|, Re(z),
and Im(z) as shown in Figure 2.3 below.

z

Im(z)

Re(z)

|z|

Figure 2.3: Geometric interpretation of |z|, Re(z), and Im(z).

Proposition 2.6. If z ∈ C, then

(a) Re(z) = 1
2(z + z),

(b) Im(z) = 1
2i(z − z),

(c) Re(z) ≤ |z|, and

(d) Im(z) ≤ |z|.

Proof. Let z = a+ ib so that z = a− ib. Solving the system of equations

z = a+ ib and z = a− ib

for a and b gives

a =
1

2
(z + z) and b =

1

2i
(z − z).

Moreover, since |z| =
√
a2 + b2, we see that

Re(z) = a ≤
√
a2 + b2 = |z| and Im(z) = b ≤

√
a2 + b2 = |z|

as required.

Proposition 2.7. If z ∈ C, then |z| = |z|.

Proof. Let z = a+ ib so that z = a− ib. Note that

|z| =
�

a2 + (−b)2 =
√
a2 + b2 = |z|

as required.

Geometrically this proposition says that length doesn’t change under a reflection through
the real axis; see Figure 2.4.
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Figure 2.4: Geometric interpretation of |z| = |z|.

Proposition 2.8. If z1, z2 are complex variables, then |z1z2| = |z1||z2|.

Proof. Recall that |w|2 = ww for any w ∈ C. Let w = z1z2 so that

|z1z2|2 = (z1z2)(z1z2) = z1z2(z1 z2) = z1(z2 z1)z2 = z1(z1 z2)z2 = (z1 z1)(z2 z2) = |z1|2|z2|2

using Proposition 2.3, the Associative Law twice, and the Commutative Law. Since the
moduli in question are non-negative real numbers we can take square roots to obtain

|z1z2| = |z1||z2|

as required.

Proposition 2.9. If z1, z2 are complex variables with z2 �= 0, then

z1
z2

=
z1 z2
|z2|2

.

Proof. Observe that
z1
z2

=
z1
z2

z2
z2

=
z1 z2
|z2|2

as required.

Theorem 2.10 (Triangle Inequality). If z1, z2 are complex variables, then

|z1 + z2| ≤ |z1|+ |z2|.

Proof. Recall that |w|2 = ww for any w ∈ C. Taking w = z1 + z2 implies

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = z1 z1 + z2 z1 + z1 z2 + z2 z2
= |z1|2 + |z2|2 + z2 z1 + z1 z2

using Exercise 2.4 and the Distributive Law. The next step is to deal with z2 z1 + z1 z2.
Recall that 2Re(w) = w + w. If we take w = z1 z2, then

w = z1 z2 = z1 (z2) = z1 z2
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using Proposition 2.3 and Exercise 2.5, and so we see that

z2 z1 + z1 z2 = w + w = 2Re(w) = 2Re(z1 z2).

However, we also know from Proposition 2.6 that Re(w) ≤ |w| which implies that

Re(z1 z2) ≤ |z1 z2| = |z1||z2| = |z1||z2|.

Therefore, we conclude that

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2|z1||z2| = (|z1|+ |z2|)2.

Since both sides of the inequality involve only non-negative real numbers, we can take square
roots to obtain

|z1 + z2| ≤ |z1|+ |z2|

as required.
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