Lecture \#2: Algebraic Properties of \mathbb{C}

Recall that $z=a+i b$, with $i=\sqrt{-1}$ and $a, b \in \mathbb{R}$, is a complex variable.

Cartesian Representation (or Geometric Interpretation) of Complex Variables

We can represent the complex variable $z=a+i b$ as the point in the plane (a, b) as shown in Figure 2.1.

Figure 2.1: The identification of \mathbb{C} with \mathbb{R}^{2}.

Note. In other words, if we let $\mathbb{C}=\{z=a+i b: a, b \in \mathbb{R}\}$ denote the set of complex variables, then we can identify \mathbb{C} with the two-dimensional cartesian plane \mathbb{R}^{2} via the identification

$$
z=a+i b \in \mathbb{C} \longleftrightarrow(a, b) \in \mathbb{R}^{2} .
$$

This identification is actually an isomorphism and so an algebraist might say that \mathbb{C} and \mathbb{R}^{2} are isomorphic and write $\mathbb{C} \cong \mathbb{R}^{2}$. We will not be concerned with isomorphisms in this class.

Observe that the distance from the point (a, b) in the plane to the origin $(0,0)$ is

$$
\sqrt{a^{2}+b^{2}}
$$

as shown in Figure 2.1. This motivates the following definition.
Definition. Let $z=a+i b$ be a complex variable. The modulus or absolute value of z, denoted $|z|$, is defined as

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

Definition. Let $z=a+i b$ be a complex variable. The (complex) conjugate of z, denoted \bar{z}, is defined as

$$
\bar{z}=a-i b .
$$

Exercise 2.1. Suppose that z is a complex variable. Show that $z \bar{z}=|z|^{2}$.
Geometrically, conjugation represents reflection in the real axis; see Figure 2.2.

Figure 2.2: Geometric representation of complex conjugation.
Proposition 2.2. If $z=a+i b$ is a complex variable, then $\sqrt{z \bar{z}}$ is a real number.
Proof. Observe that

$$
z \bar{z}=(a+i b)(a-i b)=a^{2}+b^{2}=|z|^{2}
$$

Since $|z|^{2}=z \bar{z}$ is necessarily real and non-negative we can take square roots to obtain

$$
\sqrt{z \bar{z}}=|z|=\sqrt{a^{2}+b^{2}} \in \mathbb{R}
$$

as required.
Proposition 2.3. If $z_{1}, z_{2} \in \mathbb{C}$, then $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$.
Proof. Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ so that

$$
z_{1} z_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(b_{1} a_{2}+a_{1} b_{2}\right)
$$

implying that

$$
\overline{z_{1} z_{2}}=\left(a_{1} a_{2}-b_{1} b_{2}\right)-i\left(b_{1} a_{2}+a_{1} b_{2}\right) .
$$

On the other hand,

$$
\overline{z_{1}} \overline{z_{2}}=\left(a_{1}-i b_{1}\right)\left(a_{2}-i b_{2}\right)=a_{1} a_{2}-b_{1} b_{2}-i b_{1} a_{2}-i a_{1} b_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)-i\left(b_{1} a_{2}+a_{1} b_{2}\right)
$$

as well, and the proof is complete.
Exercise 2.4. Let $z_{1}, z_{2} \in \mathbb{C}$. Show that $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.

Exercise 2.5. Let $z \in \mathbb{C}$. Show that $\overline{(\bar{z})}=z$.
Before proving the next proposition, we observe the geometric interpretation of $|z|, \operatorname{Re}(z)$, and $\operatorname{Im}(z)$ as shown in Figure 2.3 below.

Figure 2.3: Geometric interpretation of $|z|, \operatorname{Re}(z)$, and $\operatorname{Im}(z)$.
Proposition 2.6. If $z \in \mathbb{C}$, then
(a) $\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z})$,
(b) $\operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})$,
(c) $\operatorname{Re}(z) \leq|z|$, and
(d) $\operatorname{Im}(z) \leq|z|$.

Proof. Let $z=a+i b$ so that $\bar{z}=a-i b$. Solving the system of equations

$$
z=a+i b \quad \text { and } \quad \bar{z}=a-i b
$$

for a and b gives

$$
a=\frac{1}{2}(z+\bar{z}) \quad \text { and } \quad b=\frac{1}{2 i}(z-\bar{z}) .
$$

Moreover, since $|z|=\sqrt{a^{2}+b^{2}}$, we see that

$$
\operatorname{Re}(z)=a \leq \sqrt{a^{2}+b^{2}}=|z| \quad \text { and } \quad \operatorname{Im}(z)=b \leq \sqrt{a^{2}+b^{2}}=|z|
$$

as required.
Proposition 2.7. If $z \in \mathbb{C}$, then $|\bar{z}|=|z|$.
Proof. Let $z=a+i b$ so that $\bar{z}=a-i b$. Note that

$$
|\bar{z}|=\sqrt{a^{2}+(-b)^{2}}=\sqrt{a^{2}+b^{2}}=|z|
$$

as required.
Geometrically this proposition says that length doesn't change under a reflection through the real axis; see Figure 2.4.

Figure 2.4: Geometric interpretation of $|\bar{z}|=|z|$.

Proposition 2.8. If z_{1}, z_{2} are complex variables, then $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
Proof. Recall that $|w|^{2}=w \bar{w}$ for any $w \in \mathbb{C}$. Let $w=z_{1} z_{2}$ so that

$$
\left|z_{1} z_{2}\right|^{2}=\left(z_{1} z_{2}\right)\left(\overline{z_{1} z_{2}}\right)=z_{1} z_{2}\left(\overline{z_{1}} \overline{z_{2}}\right)=z_{1}\left(z_{2} \overline{z_{1}}\right) \overline{z_{2}}=z_{1}\left(\overline{z_{1}} z_{2}\right) \overline{z_{2}}=\left(z_{1} \overline{z_{1}}\right)\left(z_{2} \overline{z_{2}}\right)=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
$$

using Proposition 2.3, the Associative Law twice, and the Commutative Law. Since the moduli in question are non-negative real numbers we can take square roots to obtain

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

as required.
Proposition 2.9. If z_{1}, z_{2} are complex variables with $z_{2} \neq 0$, then

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} \overline{z_{2}}}{\left|z_{2}\right|^{2}}
$$

Proof. Observe that

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1}}{z_{2}} \frac{\overline{z_{2}}}{\overline{z_{2}}}=\frac{z_{1} \overline{z_{2}}}{\left|z_{2}\right|^{2}}
$$

as required.
Theorem 2.10 (Triangle Inequality). If z_{1}, z_{2} are complex variables, then

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| .
$$

Proof. Recall that $|w|^{2}=w \bar{w}$ for any $w \in \mathbb{C}$. Taking $w=z_{1}+z_{2}$ implies

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}+z_{2}}\right)=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}}+\overline{z_{2}}\right) & =z_{1} \overline{z_{1}}+z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}}+z_{2} \overline{z_{2}} \\
& =\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}}
\end{aligned}
$$

using Exercise 2.4 and the Distributive Law. The next step is to deal with $z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}}$. Recall that $2 \operatorname{Re}(w)=w+\bar{w}$. If we take $w=z_{1} \overline{z_{2}}$, then

$$
\bar{w}=\overline{z_{1} \overline{z_{2}}}=\overline{z_{1}} \overline{\left(\overline{z_{2}}\right)}=\overline{z_{1}} z_{2}
$$

using Proposition 2.3 and Exercise 2.5, and so we see that

$$
z_{2} \overline{z_{1}}+z_{1} \overline{z_{2}}=\bar{w}+w=2 \operatorname{Re}(w)=2 \operatorname{Re}\left(z_{1} \overline{z_{2}}\right)
$$

However, we also know from Proposition 2.6 that $\operatorname{Re}(w) \leq|w|$ which implies that

$$
\operatorname{Re}\left(z_{1} \overline{z_{2}}\right) \leq\left|z_{1} \overline{z_{2}}\right|=\left|z_{1}\right|\left|\overline{z_{2}}\right|=\left|z_{1}\right|\left|z_{2}\right| .
$$

Therefore, we conclude that

$$
\left|z_{1}+z_{2}\right|^{2} \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right|=\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
$$

Since both sides of the inequality involve only non-negative real numbers, we can take square roots to obtain

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

as required.

