Lecture \#28: Laurent Series

Recall from Lecture \#27 that we considered the function

$$
f(z)=\frac{1+2 z}{z^{2}+z^{3}}
$$

and we formally manipulated $f(z)$ to obtain the infinite expansion

$$
f(z)=\frac{1}{z^{2}}+\frac{1}{z}-1+z-z^{2}+\cdots .
$$

Observe that $f(z)$ is analytic in the annulus $0<|z|<1$. Does

$$
\frac{1+2 z}{z^{2}+z^{3}}=\frac{1}{z^{2}}+\frac{1}{z}-1+z-z^{2}+\cdots
$$

for all $0<|z|<1$? The answer turns out to be yes. Thus, our goal for today is to prove that if a function $f(z)$ is analytic in an annulus, then it has an infinite series expansion which converges for all z in the annulus. This expansion is known as the Laurent series for $f(z)$.

Theorem 28.1. Suppose that $f(z)$ is analytic in the annulus $r<\left|z-z_{0}\right|<R$ (with $r=0$ and $R=\infty$ allowed). Then $f(z)$ can be represented as

$$
\begin{equation*}
f(z)=\sum_{j=0}^{\infty} a_{j}\left(z-z_{0}\right)^{j}+\sum_{j=1}^{\infty} a_{-j}\left(z-z_{0}\right)^{-j} \tag{*}
\end{equation*}
$$

where

$$
a_{j}=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{j+1}} \mathrm{~d} \zeta, \quad j=0, \pm 1, \pm 2, \ldots
$$

and C is any closed contour oriented counterclockwise that surrounds z_{0} and lies entirely in the annulus.

The proof is very similar to the proof of Theorem 26.1 for the Taylor series representation of an analytic function in a disk $\left|z-z_{0}\right|<R$. We will not include the full proof, but instead give an indication of where the formula for a_{j} comes from. Suppose that $f(z)$ can be represented as

$$
f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

with convergence in the annulus $r<\left|z-z_{0}\right|<R$. Observe that

$$
\frac{1}{2 \pi i} f(z)\left(z-z_{0}\right)^{-j}=\sum_{k=-\infty}^{\infty} \frac{a_{k}}{2 \pi i}\left(z-z_{0}\right)^{k-j}
$$

and so

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{j}} \mathrm{~d} z=\sum_{k=-\infty}^{\infty} \frac{a_{k}}{2 \pi i} \int_{C} \frac{1}{\left(z-z_{0}\right)^{j-k}} \mathrm{~d} z
$$

where C is any closed contour oriented counterclockwise that surrounds z_{0} and lies entirely in the annulus. We now observe from Theorem 23.2 that

$$
\int_{C} \frac{1}{\left(z-z_{0}\right)^{j-k}} \mathrm{~d} z=2 \pi i \quad \text { if } \quad k=j-1
$$

and

$$
\int_{C} \frac{1}{\left(z-z_{0}\right)^{j-k}} \mathrm{~d} z=0 \quad \text { if } \quad k \neq j-1
$$

so that

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{j}} \mathrm{~d} z=\sum_{k=-\infty}^{\infty} \frac{a_{k}}{2 \pi i} \int_{C} \frac{1}{\left(z-z_{0}\right)^{j-k}} \mathrm{~d} z=a_{j-1}
$$

In other words,

$$
a_{j-1}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{j}} \mathrm{~d} z \quad \text { or, equivalently, } \quad a_{j}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{j+1}} \mathrm{~d} z .
$$

Remark. Observe that

$$
a_{j}=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{j+1}} \mathrm{~d} \zeta
$$

so, at least for $j=0,1,2, \ldots$, it might be tempting to use the Cauchy Integral Formula (Theorem 25.4) to try and conclude that a_{j} is equal to

$$
\frac{f^{(j)}\left(z_{0}\right)}{j!}
$$

as was the case in the Taylor series derivation. This is not true, however, since the assumption on $f(z)$ is that it is analytic in the annulus $r<\left|z-z_{0}\right|<R$. This means that if C is a closed contour oriented counterclockwise lying in the annulus and surrounding z_{0}, there is no guarantee that $f(z)$ is analytic everywhere inside C which is the assumption required in order to apply the Cauchy Integral Formula. Thus, although there is a seemingly simple formula for the coefficients a_{j} in the Laurent series expansion, the computation of a_{j} as a contour integral is not necessarily a straightforward application of the Cauchy Integral Formula.

Example 28.2. Suppose that

$$
f(z)=\frac{1+2 z}{z^{2}+z^{3}}
$$

which is analytic for $0<|z|<1$. Show that the Laurent series expansion of $f(z)$ for $0<|z|<1$ is

$$
\frac{1}{z^{2}}+\frac{1}{z}-1+z-z^{2}+\cdots
$$

Solution. Suppose that C is any closed contour oriented counterclockwise lying entirely in $\{0<|z|<1\}$ and surrounding $z_{0}=0$. Consider

$$
a_{j}=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{j+1}} \mathrm{~d} \zeta=\frac{1}{2 \pi i} \int_{C} \frac{1+2 \zeta}{\zeta^{2}+\zeta^{3}} \cdot \frac{1}{\zeta^{j+1}} \mathrm{~d} \zeta=\frac{1}{2 \pi i} \int_{C} \frac{(1+2 \zeta) /(1+\zeta)}{\zeta^{j+3}} \mathrm{~d} \zeta
$$

The reason for writing it in this form is that now we can apply the Cauchy Integral Formula to compute

$$
\frac{1}{2 \pi i} \int_{C} \frac{(1+2 \zeta) /(1+\zeta)}{\zeta^{j+3}} \mathrm{~d} \zeta
$$

Observe that the function

$$
g(z)=\frac{1+2 z}{1+z}
$$

is analytic inside and on C. Thus, the Cauchy Integral Theorem implies that if $j \leq-3$, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{(1+2 \zeta) /(1+\zeta)}{\zeta^{j+3}} \mathrm{~d} \zeta=0
$$

so that $a_{-3}=a_{-4}=\cdots=0$. The Cauchy Integral Formula implies that if $j \geq-2$, then

$$
\frac{1}{2 \pi i} \int_{C} \frac{(1+2 \zeta) /(1+\zeta)}{\zeta^{j+3}} \mathrm{~d} \zeta=\frac{1}{2 \pi i} \int_{C} \frac{g(\zeta)}{\zeta^{j+3}} \mathrm{~d} \zeta=\frac{g^{(j+2)}(0)}{(j+2)!}
$$

Note that if $j=-2$, then $a_{-2}=g(0)=1$. In order to compute successive derivatives of $g(z)$, observe that

$$
g(z)=\frac{1+2 z}{1+z}=\frac{1}{1+z}+\frac{2 z}{1+z}
$$

Now, if $k=1,2,3, \ldots$, then

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}}\left(\frac{1}{1+z}\right)=(-1)^{k} \frac{k!}{(1+z)^{k+1}}
$$

and

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}}\left(\frac{z}{1+z}\right)=(-1)^{k+1} \frac{k!}{(1+z)^{k}}+(-1)^{k} \frac{k!z}{(1+z)^{k+1}}
$$

so that

$$
g^{(k)}(0)=(-1)^{k} k!+2(-1)^{k+1} k!=(-1)^{k+1} k!\text { for } k=1,2,3, \ldots .
$$

This implies

$$
a_{j}=\frac{g^{(j+2)}(0)}{(j+2)!}=\frac{(-1)^{j+3}(j+2)!}{(j+2)!}=(-1)^{j+3}=(-1)^{j+1} \quad \text { for } j=-1,0,1,2 \ldots
$$

so that the Laurent series expansion of $f(z)$ for $0<|z|<1$ is

$$
\frac{1}{z^{2}}+\frac{1}{z}-1+z-z^{2}+\cdots=\frac{1}{z^{2}}+\sum_{j=-1}^{\infty}(-1)^{j+1} z^{j}
$$

Remark. We will soon learn other methods for determining Laurent series expansions that do not require the computation of contour integrals.

