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Lecture #28: Laurent Series

Recall from Lecture #27 that we considered the function

f(z) =
1 + 2z

z2 + z3

and we formally manipulated f(z) to obtain the infinite expansion

f(z) =
1

z2
+

1

z
− 1 + z − z

2 + · · · .

Observe that f(z) is analytic in the annulus 0 < |z| < 1. Does

1 + 2z

z2 + z3
=

1

z2
+

1

z
− 1 + z − z

2 + · · ·

for all 0 < |z| < 1? The answer turns out to be yes. Thus, our goal for today is to prove that
if a function f(z) is analytic in an annulus, then it has an infinite series expansion which
converges for all z in the annulus. This expansion is known as the Laurent series for f(z).

Theorem 28.1. Suppose that f(z) is analytic in the annulus r < |z − z0| < R (with r = 0
and R = ∞ allowed). Then f(z) can be represented as

f(z) =
∞�

j=0

aj(z − z0)
j +

∞�

j=1

a−j(z − z0)
−j (∗)

where

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ, j = 0,±1,±2, . . . ,

and C is any closed contour oriented counterclockwise that surrounds z0 and lies entirely in
the annulus.

The proof is very similar to the proof of Theorem 26.1 for the Taylor series representation of
an analytic function in a disk |z−z0| < R. We will not include the full proof, but instead give
an indication of where the formula for aj comes from. Suppose that f(z) can be represented
as

f(z) =
∞�

k=−∞

ak(z − z0)
k

with convergence in the annulus r < |z − z0| < R. Observe that

1

2πi
f(z)(z − z0)

−j =
∞�

k=−∞

ak

2πi
(z − z0)

k−j
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and so
1

2πi

�

C

f(z)

(z − z0)j
dz =

∞�

k=−∞

ak

2πi

�

C

1

(z − z0)j−k
dz

where C is any closed contour oriented counterclockwise that surrounds z0 and lies entirely
in the annulus. We now observe from Theorem 23.2 that

�

C

1

(z − z0)j−k
dz = 2πi if k = j − 1

and �

C

1

(z − z0)j−k
dz = 0 if k �= j − 1

so that
1

2πi

�

C

f(z)

(z − z0)j
dz =

∞�

k=−∞

ak

2πi

�

C

1

(z − z0)j−k
dz = aj−1.

In other words,

aj−1 =
1

2πi

�

C

f(z)

(z − z0)j
dz or, equivalently, aj =

1

2πi

�

C

f(z)

(z − z0)j+1
dz.

Remark. Observe that

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ

so, at least for j = 0, 1, 2, . . ., it might be tempting to use the Cauchy Integral Formula
(Theorem 25.4) to try and conclude that aj is equal to

f
(j)(z0)

j!

as was the case in the Taylor series derivation. This is not true, however, since the assumption
on f(z) is that it is analytic in the annulus r < |z − z0| < R. This means that if C is a
closed contour oriented counterclockwise lying in the annulus and surrounding z0, there is no
guarantee that f(z) is analytic everywhere inside C which is the assumption required in order
to apply the Cauchy Integral Formula. Thus, although there is a seemingly simple formula
for the coefficients aj in the Laurent series expansion, the computation of aj as a contour
integral is not necessarily a straightforward application of the Cauchy Integral Formula.

Example 28.2. Suppose that

f(z) =
1 + 2z

z2 + z3

which is analytic for 0 < |z| < 1. Show that the Laurent series expansion of f(z) for
0 < |z| < 1 is

1

z2
+

1

z
− 1 + z − z

2 + · · · .
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Solution. Suppose that C is any closed contour oriented counterclockwise lying entirely in
{0 < |z| < 1} and surrounding z0 = 0. Consider

aj =
1

2πi

�

C

f(ζ)

(ζ − z0)j+1
dζ =

1

2πi

�

C

1 + 2ζ

ζ2 + ζ3
· 1

ζj+1
dζ =

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ.

The reason for writing it in this form is that now we can apply the Cauchy Integral Formula
to compute

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ.

Observe that the function

g(z) =
1 + 2z

1 + z

is analytic inside and on C. Thus, the Cauchy Integral Theorem implies that if j ≤ −3, then

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ = 0

so that a−3 = a−4 = · · · = 0. The Cauchy Integral Formula implies that if j ≥ −2, then

1

2πi

�

C

(1 + 2ζ)/(1 + ζ)

ζj+3
dζ =

1

2πi

�

C

g(ζ)

ζj+3
dζ =

g
(j+2)(0)

(j + 2)!
.

Note that if j = −2, then a−2 = g(0) = 1. In order to compute successive derivatives of
g(z), observe that

g(z) =
1 + 2z

1 + z
=

1

1 + z
+

2z

1 + z

Now, if k = 1, 2, 3, . . ., then

dk

dzk

�
1

1 + z

�
= (−1)k

k!

(1 + z)k+1

and
dk

dzk

�
z

1 + z

�
= (−1)k+1 k!

(1 + z)k
+ (−1)k

k!z

(1 + z)k+1

so that
g
(k)(0) = (−1)kk! + 2(−1)k+1

k! = (−1)k+1
k! for k = 1, 2, 3, . . ..

This implies

aj =
g
(j+2)(0)

(j + 2)!
=

(−1)j+3(j + 2)!

(j + 2)!
= (−1)j+3 = (−1)j+1 for j = −1, 0, 1, 2 . . .

so that the Laurent series expansion of f(z) for 0 < |z| < 1 is

1

z2
+

1

z
− 1 + z − z

2 + · · · = 1

z2
+

∞�

j=−1

(−1)j+1
z
j
.

Remark. We will soon learn other methods for determining Laurent series expansions that
do not require the computation of contour integrals.
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