Lecture \#26: Taylor Series

Our primary goal for today is to prove that if $f(z)$ is an analytic function in a domain D, then $f(z)$ can be expanded in a Taylor series about any point $a \in D$. Moreover, the Taylor series for $f(z)$ converges uniformly to $f(z)$ for any z in a closed disk centred at a and contained entirely in D.

Theorem 26.1. Suppose that $f(z)$ is analytic in the disk $\{|z-a|<R\}$. Then the sequence of Taylor polynomials for $f(z)$ about the point a, namely
$T_{n}(z ; f, a)=f(a)+f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(z-a)^{n}=\sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(z-a)^{j}$,
converges to $f(z)$ for all z in this disk. Furthermore, the convergence is uniform in any closed subdisk $\left\{|z-a| \leq R^{\prime}<R\right\}$. In particular, if $f(z)$ is analytic in $\{|z-a|<R\}$, then

$$
f(z)=\sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!}(z-a)^{j}
$$

We call (\dagger) the Taylor series for $f(z)$ about the point a.
Proof. It is sufficient to prove uniform convergence in every subdisk $\left\{|z-a| \leq R^{\prime}<R\right\}$. Set $R^{\prime \prime}=\left(R+R^{\prime}\right) / 2$ and consider the closed contour $C=\left\{|z-a|=R^{\prime \prime}\right\}$ oriented counterclockwise. By the Cauchy Integral Formula,

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \tag{*}
\end{equation*}
$$

Observe that

$$
\frac{1}{\zeta-z}=\frac{1}{(\zeta-a)-(z-a)}=\frac{1}{\zeta-a} \frac{1}{1-\left(\frac{z-a}{\zeta-a}\right)}=\frac{1}{\zeta-a} \frac{1}{1-w} \quad \text { where } \quad w=\left(\frac{z-a}{\zeta-a}\right)
$$

and so using the fact that

$$
\frac{1-w^{n+1}}{1-w}=1+w+w^{2}+\cdots+w^{n} \quad \text { or equivalently } \quad \frac{1}{1-w}=1+w+\cdots+w^{n}+\frac{w^{n+1}}{1-w}
$$

we conclude

$$
\begin{aligned}
\frac{1}{1-\left(\frac{z-a}{\zeta-a}\right)} & =1+\left(\frac{z-a}{\zeta-a}\right)+\cdots+\left(\frac{z-a}{\zeta-a}\right)^{n}+\frac{\left(\frac{z-a}{\zeta-a}\right)^{n+1}}{1-\left(\frac{z-a}{\zeta-a}\right)} \\
& =1+\left(\frac{z-a}{\zeta-a}\right)+\cdots+\left(\frac{z-a}{\zeta-a}\right)^{n}+\frac{\zeta-a}{\zeta-z}\left(\frac{z-a}{\zeta-a}\right)^{n+1}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{1}{\zeta-z}=\frac{1}{\zeta-a}\left[1+\left(\frac{z-a}{\zeta-a}\right)+\cdots+\left(\frac{z-a}{\zeta-a}\right)^{n}+\frac{\zeta-a}{\zeta-z}\left(\frac{z-a}{\zeta-a}\right)^{n+1}\right] \tag{**}
\end{equation*}
$$

Substituting ($* *$) into $(*)$ we conclude

$$
\begin{aligned}
& f(z)= \frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-a}\left[1+\left(\frac{z-a}{\zeta-a}\right)+\cdots+\left(\frac{z-a}{\zeta-a}\right)^{n}+\frac{\zeta-a}{\zeta-z}\left(\frac{z-a}{\zeta-a}\right)^{n+1}\right] \mathrm{d} \zeta \\
&=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-a} \mathrm{~d} \zeta+\frac{(z-a)}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-a)^{2}} \mathrm{~d} \zeta+\cdots+\frac{(z-a)^{n}}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-a)^{n+1}} \mathrm{~d} \zeta \\
& \quad+\frac{(z-a)^{n+1}}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)(\zeta-a)^{n+1}} \mathrm{~d} \zeta .
\end{aligned}
$$

However, from the Cauchy Integral Formula, we know

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-a} \mathrm{~d} \zeta=f(a), \quad \frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-a)^{2}} \mathrm{~d} \zeta=f^{\prime}(a), \quad \frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-a)^{3}} \mathrm{~d} \zeta=\frac{f^{\prime \prime}(a)}{2!}
$$

and in general

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-a)^{j+1}} \mathrm{~d} \zeta=\frac{f^{(j)}(a)}{j!}
$$

so that

$$
\begin{aligned}
f(z) & =f(a)+f^{\prime}(a)(z-a)+\cdots+\frac{f^{(n)}(a)}{n!}(z-a)^{n}+\frac{(z-a)^{n+1}}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)(\zeta-a)^{n+1}} \mathrm{~d} \zeta \\
& =T_{n}(z ; f, a)+R_{n}(z ; f, a)
\end{aligned}
$$

Thus, we see that in order to show that $T_{n}(z ; f, a)$ converges to $f(z)$ uniformly for $|z-a| \leq R^{\prime}$, it suffices to show that $R_{n}(z ; f, a)$ converges to 0 uniformly for $|z-a| \leq R^{\prime}$. Suppose, therefore, that $|z-a| \leq R^{\prime}$ and $|\zeta-a|=R^{\prime \prime}$ where $R^{\prime \prime}=\left(R+R^{\prime}\right) / 2$ as before. By the triangle inequality,

$$
|\zeta-z| \geq R^{\prime \prime}-R^{\prime}=\frac{R+R^{\prime}}{2}-R^{\prime}=\frac{R-R^{\prime}}{2}
$$

and so

$$
\begin{aligned}
\left|R_{n}(z ; f, a)\right| & =\left|\frac{(z-a)^{n+1}}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)(\zeta-a)^{n+1}} \mathrm{~d} \zeta\right| \leq \frac{1}{2 \pi} \int_{C}\left|\frac{f(\zeta)(z-a)^{n+1}}{(\zeta-z)(\zeta-a)^{n+1}}\right||\mathrm{d} \zeta| \\
& \leq \frac{1}{2 \pi} \int_{C} \frac{|f(\zeta)|\left(R^{\prime}\right)^{n+1}}{\left(R^{\prime \prime}\right)^{n+1}\left(R-R^{\prime}\right) / 2}|\mathrm{~d} \zeta| \\
& \leq \frac{1}{\pi} \max _{\zeta \in C}|f(\zeta)|\left(\frac{R^{\prime}}{R^{\prime \prime}}\right)^{n+1} \frac{1}{R-R^{\prime}} \ell(C)
\end{aligned}
$$

where $\ell(C)=2 \pi R^{\prime \prime}$ is the arclength of C. That is, after some simplification, we obtain

$$
\left|R_{n}(z ; f, a)\right| \leq\left(\frac{2 R^{\prime}}{R+R^{\prime}}\right)^{n} \frac{2 R^{\prime}}{R-R^{\prime}} \max _{\zeta \in C}|f(\zeta)|
$$

Notice that the right side of the previous inequality is independent of z. Since $2 R^{\prime}<R+R^{\prime}$, the right side can be made less than any $\epsilon>0$ by taking n sufficiently large. This gives the required uniform convergence.

Example 26.2. Find the Taylor series for $f(z)=e^{z}$ about $a=0$.
Solution. Since $f^{(n)}(z)=e^{z}$ so that $f^{(n)}(0)=1$ for all non-negative integers n, we conclude

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots=\sum_{j=0}^{\infty} \frac{z^{j}}{j!}
$$

for every $z \in \mathbb{C}$.
Example 26.3. Find the Taylor series for both $f_{1}(z)=\sin z$ and $f_{2}(z)=\cos z$ about $a=0$, and then show that the Taylor series for $e^{i z}$ equals the sum of the Taylor series for $\cos z$ and $i \sin z$.

Solution. Observe that $f_{1}^{\prime}(z)=\cos z=f_{2}(z)$ and $f_{2}^{\prime}(z)=-\sin z=-f_{1}(z)$. Since $\cos 0=1$ and $\sin 0=0$, we obtain

$$
\sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{z^{2 j+1}}{(2 j+1)!}
$$

and

$$
\cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{z^{2 j}}{(2 j)!}
$$

for every $z \in \mathbb{C}$. Observe that

$$
\begin{aligned}
e^{i z} & =1+(i z)+\frac{(i z)^{2}}{2!}+\frac{(i z)^{3}}{3!}+\frac{(i z)^{4}}{4!}+\frac{(i z)^{5}}{5!}+\frac{(i z)^{6}}{6!}+\cdots \\
& =\left(1+\frac{(i z)^{2}}{2!}+\frac{(i z)^{4}}{4!}+\frac{(i z)^{6}}{6!}+\cdots\right)+\left(i z+\frac{(i z)^{3}}{3!}+\frac{(i z)^{5}}{5!}+\frac{(i z)^{7}}{7!}+\cdots\right) \\
& =\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right)+i\left(z+\frac{i^{2} z^{3}}{3!}+\frac{i^{4} z^{5}}{5!}+\frac{i^{6} z^{7}}{7!}+\cdots\right) \\
& =\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots\right)+i\left(z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots\right) \\
& =\cos z+i \sin z
\end{aligned}
$$

as expected. It is worth noting that term-by-term manipulations of the sum of Taylor series are justified by Theorem 26.1 since the Taylor series involved converge uniformly in closed disks about the point $a=0$.

Remark. Sometimes the phrase Maclaurin series is used in place of Taylor series when $a=0$.

Theorem 26.4. If $f(z)$ is analytic at z_{0}, then the Taylor series for $f^{\prime}(z)$ at z_{0} can be obtained by termwise differentiation of the Taylor series for $f(z)$ about z_{0} and converges in the same disk as the Taylor series for $f(z)$.

Proof. Since $f(z)$ is analytic at z_{0}, the Taylor series for $f(z)$ about z_{0} is given by

$$
f(z)=\sum_{j=0}^{\infty} \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j}
$$

By termwise differentiation, we obtain

$$
\begin{equation*}
f^{\prime}(z)=\sum_{j=0}^{\infty} j \frac{f^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j-1}=\sum_{j=1}^{\infty} \frac{f^{(j)}\left(z_{0}\right)}{(j-1)!}\left(z-z_{0}\right)^{j-1} \tag{*}
\end{equation*}
$$

Suppose now that $g(z)=f^{\prime}(z)$. By Theorem 25.3, we know that $g(z)$ is analytic at z_{0} so that its Taylor series is

$$
g(z)=\sum_{j=0}^{\infty} \frac{g^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j} .
$$

However, $g^{(j)}\left(z_{0}\right)=f^{(j+1)}\left(z_{0}\right)$ so that

$$
\begin{equation*}
f^{\prime}(z)=g(z)=\sum_{j=0}^{\infty} \frac{g^{(j)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j}=\sum_{j=0}^{\infty} \frac{f^{(j+1)}\left(z_{0}\right)}{j!}\left(z-z_{0}\right)^{j} . \tag{**}
\end{equation*}
$$

But by a change of index, it is clear that $(*)$ and $(* *)$ are equal as required.

