Lecture \#24: The Cauchy Integral Formula

Recall that the Cauchy Integral Theorem, Basic Version states that if D is a domain and $f(z)$ is analytic in D with $f^{\prime}(z)$ continuous, then

$$
\int_{C} f(z) \mathrm{d} z=0
$$

for any closed contour C lying entirely in D having the property that C is continuously deformable to a point.
We also showed that if C is any closed contour oriented counterclockwise in \mathbb{C} and a is inside C, then

$$
\begin{equation*}
\int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi i \tag{*}
\end{equation*}
$$

Our goal now is to derive the celebrated Cauchy Integral Formula which can be viewed as a generalization of $(*)$.

Theorem 24.1 (Cauchy Integral Formula). Suppose that D is a domain and that $f(z)$ is analytic in D with $f^{\prime}(z)$ continuous. If C is a closed contour oriented counterclockwise lying entirely in D having the property that the region surrounded by C is a simply connected subdomain of D (i.e., if C is continuously deformable to a point) and a is inside C, then

$$
f(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-a} \mathrm{~d} z .
$$

Proof. Observe that we can write

$$
\int_{C} \frac{f(z)}{z-a} \mathrm{~d} z=\int_{C} \frac{f(a)}{z-a} \mathrm{~d} z+\int_{C} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z=2 \pi f(a) i+\int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z
$$

where $C_{a}=\{|z-a|=r\}$ oriented counterclockwise since $(*)$ implies

$$
\int_{C} \frac{f(a)}{z-a} \mathrm{~d} z=f(a) \int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi f(a) i
$$

and

$$
\int_{C} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z=\int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z
$$

since the integrand

$$
\frac{f(z)-f(a)}{z-a}
$$

is analytic everywhere except at $z=a$ and its derivative is continuous everywhere except at $z=a$ so that integration over C can be continuously deformed to integration over C_{a}. However, if we write

$$
\int_{C} \frac{f(z)}{z-a} \mathrm{~d} z-2 \pi f(a) i=\int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z
$$

and note that the left side of the previous expression does not depend on r, then we conclude

$$
\int_{C} \frac{f(z)}{z-a} \mathrm{~d} z-2 \pi f(a) i=\lim _{r \downarrow 0} \int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z .
$$

Hence, the proof will be complete if we can show that

$$
\lim _{r \downarrow 0} \int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z=0 .
$$

To this end, suppose that $M_{r}=\max \left\{|f(z)-f(a)|, z\right.$ on $\left.C_{a}\right\}$. Therefore, if z is on $C_{a}=$ $\{|z-a|=r\}$, then

$$
\left|\frac{f(z)-f(a)}{z-a}\right|=\frac{|f(z)-f(a)|}{|z-a|}=\frac{|f(z)-f(a)|}{r} \leq \frac{M_{r}}{r}
$$

so that

$$
\begin{aligned}
\left|\int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z\right| \leq \int_{C_{a}}\left|\frac{f(z)-f(a)}{z-a}\right||\mathrm{d} z| \leq \int_{C_{a}} \frac{M_{r}}{r}|\mathrm{~d} z|=\frac{M_{r}}{r} \int_{C_{a}} 1|\mathrm{~d} z| & =\frac{M_{r}}{r} \ell\left(C_{a}\right) \\
& =\frac{M_{r}}{r} \cdot 2 \pi r \\
& =2 \pi M_{r}
\end{aligned}
$$

since the arclength of C_{a} is $\ell\left(C_{a}\right)=2 \pi r$. However, since $f(z)$ is analytic in D, we know that $f(z)$ is necessarily continuous in D so that

$$
\lim _{z \rightarrow a}|f(z)-f(a)|=0 \quad \text { or, equivalently, } \quad \lim _{r \downarrow 0} M_{r}=0
$$

Therefore,

$$
\lim _{r \downarrow 0}\left|\int_{C_{a}} \frac{f(z)-f(a)}{z-a} \mathrm{~d} z\right| \leq \lim _{r \downarrow 0}\left(2 \pi M_{r}\right)=0
$$

as required.
Example 24.2. Compute

$$
\frac{1}{2 \pi i} \int_{C} \frac{z e^{z}}{z-i} \mathrm{~d} z
$$

where $C=\{|z|=2\}$ is the circle of radius 2 centred at 0 oriented counterclockwise.
Solution. Observe that $f(z)=z e^{z}$ is entire, $f^{\prime}(z)=z e^{z}+e^{z}$ is continuous, and i is inside C. Therefore, by the Cauchy Integral Formula,

$$
\frac{1}{2 \pi i} \int_{C} \frac{z e^{z}}{z-i} \mathrm{~d} z=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-i} \mathrm{~d} z=f(i)=i e^{i}
$$

Example 24.3. Compute

$$
\int_{C} \frac{z e^{z}}{z+i} \mathrm{~d} z
$$

where $C=\{|z|=2\}$ is the circle of radius 2 centred at 0 oriented counterclockwise.

Solution. Observe that $f(z)=z e^{z}$ is entire, $f^{\prime}(z)=z e^{z}+e^{z}$ is continuous, and $-i$ is inside C. Therefore, by the Cauchy Integral Formula,

$$
\int_{C} \frac{z e^{z}}{z+i} \mathrm{~d} z=\int_{C} \frac{f(z)}{z+i} \mathrm{~d} z=2 \pi i f(-i)=2 \pi i \cdot-i e^{-i}=2 \pi e^{-i}
$$

Example 24.4. Compute

$$
\int_{C} \frac{z e^{z}}{z^{2}+1} \mathrm{~d} z
$$

where $C=\{|z|=2\}$ is the circle of radius 2 centred at 0 oriented counterclockwise.
Solution. Observe that partial fractions implies

$$
\frac{1}{z^{2}+1}=\frac{1}{z^{2}-i^{2}}=\frac{1}{(z+i)(z-i)}=\frac{i / 2}{z+i}-\frac{i / 2}{z-i}
$$

and so

$$
\int_{C} \frac{z e^{z}}{z^{2}+1} \mathrm{~d} z=\frac{i}{2} \int_{C} \frac{z e^{z}}{z+i} \mathrm{~d} z-\frac{i}{2} \int_{C} \frac{z e^{z}}{z-i} \mathrm{~d} z
$$

Let $f(z)=z e^{z}$. Note that $f(z)$ is entire and $f^{\prime}(z)=z e^{z}+e^{z}$ is continuous. Since both i and $-i$ are inside C, the Cauchy Integral Formula implies
$\int_{C} \frac{z e^{z}}{z+i} \mathrm{~d} z=2 \pi i f(-i)=2 \pi i \cdot-i e^{-i}=2 \pi e^{-i}$ and $\int_{C} \frac{z e^{z}}{z-i} \mathrm{~d} z=2 \pi i f(i)=2 \pi i \cdot i e^{i}=-2 \pi e^{i}$
so that

$$
\int_{C} \frac{z e^{z}}{z^{2}+1} \mathrm{~d} z=\frac{i}{2} \cdot 2 \pi e^{-i}-\frac{i}{2} \cdot-2 \pi e^{i}=\pi i e^{-i}+\pi i e^{i}=2 \pi i\left[\frac{e^{i}+e^{-i}}{2}\right]=2 \pi i \cos 1
$$

