Lecture \#23: Applications of the Cauchy Integral Theorem

Last lecture we derived two results by direct calculation, namely

$$
\int_{C} \frac{1}{z} \mathrm{~d} z=2 \pi i
$$

where C is the circle of radius $r>0$ centred at 0 oriented counterclockwise and, more generally,

$$
\int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi i
$$

for any $a \in \mathbb{C}$ with $|a|<r$. Note that the first result is a special case of the second result (i.e., with $a=0$). Also note that the first result was relatively easy to derive whereas the second result was not.
Example 23.1. Suppose that $C_{a}=\{|z-a|<r\}$ denotes the circle of radius $r>0$ centred at a oriented counterclockwise. Compute

$$
\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z
$$

Solution. Since the function

$$
f(z)=\frac{1}{z-a}
$$

is not analytic at a which happens to be inside C_{a}, we must evaluate this contour integral by definition. Let $z(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$, parametrize C so that $z^{\prime}(t)=i r e^{i t}$. Therefore,

$$
\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z=\int_{0}^{2 \pi} \frac{1}{z(t)-a} z^{\prime}(t) \mathrm{d} t=\int_{0}^{2 \pi} \frac{i r e^{i t}}{a+r e^{i t}-a} \mathrm{~d} t=\int_{0}^{2 \pi} i \mathrm{~d} t=2 \pi i .
$$

We have now determined by direct calculations that

$$
\int_{C} \frac{1}{z-a} \mathrm{~d} z=\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z=2 \pi i
$$

where C is the circle of radius $r>0$ centred at 0 oriented counterclockwise, C_{a} is the circle of radius $r>0$ centred at a oriented counterclockwise, and $|a|<r$. We will now show that it is easy to determine

$$
\int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi i
$$

as a consequence of the fact that

$$
\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z=2 \pi i
$$

which will render our horrendous calculation from Lecture \#19 unnecessary. Consider Figure 23.1 below.

Figure 23.1: Continuous deformation of C into C_{a}.
Here we have taken z_{1} and z_{2} to be the points of intersection of C_{a} with the negative and positive imaginary axes, respectively. The curve Γ_{1} connects z_{1} to z_{2} counterclockwise along C_{a} while the curve Γ_{2} connects z_{2} with z_{1} counterclockwise along C_{a}. Note that

$$
\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z=\int_{\Gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\Gamma_{2}} \frac{1}{z-a} \mathrm{~d} z
$$

Let P_{1} be the curve that connects C_{a} to C along the negative imaginary axis, and let P_{4} be the curve that connects C to C_{a} along the negative imaginary axis. Similarly, let P_{2} be the curve that connects C to C_{a} along the positive imaginary axis, and let P_{3} be the curve that connects C_{a} to C along the positive imaginary axis. Finally, let γ_{1} be the curve counterclockwise along C connecting P_{1} to P_{2}, and let γ_{2} be the curve counterclockwise along C connecting P_{3} to P_{4}. Note that

$$
\int_{C} \frac{1}{z-a} \mathrm{~d} z=\int_{\gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{2}} \frac{1}{z-a} \mathrm{~d} z
$$

Now here is the key. The function

$$
f(z)=\frac{1}{z-a}
$$

is analytic everywhere in \mathbb{C} except at a. Therefore, the Fundamental Theorem of Calculus tells us that the value of the contour integral of $f(z)$ over any curve going from z_{1} to z_{2} is independent of the curve taken (as long as that curve does not pass through a). Now here are two curves going from z_{1} to z_{2}, namely (i) Γ_{1}, and (ii) $P_{1} \oplus \gamma_{1} \oplus P_{2}$. This means

$$
\int_{\Gamma_{1}} \frac{1}{z-a} \mathrm{~d} z=\int_{P_{1} \oplus \gamma_{1} \oplus P_{2}} \frac{1}{z-a} \mathrm{~d} z=\int_{P_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{P_{2}} \frac{1}{z-a} \mathrm{~d} z
$$

Similarly,

$$
\int_{\Gamma_{2}} \frac{1}{z-a} \mathrm{~d} z=\int_{P_{3} \oplus \gamma_{2} \oplus P_{4}} \frac{1}{z-a} \mathrm{~d} z=\int_{P_{3}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{2}} \frac{1}{z-a} \mathrm{~d} z+\int_{P_{4}} \frac{1}{z-a} \mathrm{~d} z
$$

Adding these together gives

$$
\begin{aligned}
& \int_{\Gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\Gamma_{2}} \frac{1}{z-a} \mathrm{~d} z \\
& =\int_{P_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{P_{3}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{2}} \frac{1}{z-a} \mathrm{~d} z+\int_{P_{2}} \frac{1}{z-a} \mathrm{~d} z+\int_{P_{4}} \frac{1}{z-a} \mathrm{~d} z
\end{aligned}
$$

However, since P_{1} and P_{4} follow the same path but in different directions, we have

$$
\int_{P_{1}} \frac{1}{z-a} \mathrm{~d} z=-\int_{P_{4}} \frac{1}{z-a} \mathrm{~d} z
$$

Similarly, P_{2} and P_{3} follow the same path but in the different directions so that

$$
\int_{P_{2}} \frac{1}{z-a} \mathrm{~d} z=-\int_{P_{3}} \frac{1}{z-a} \mathrm{~d} z
$$

This implies

$$
\int_{\Gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\Gamma_{2}} \frac{1}{z-a} \mathrm{~d} z=\int_{\gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{2}} \frac{1}{z-a} \mathrm{~d} z
$$

But we know

$$
\int_{\Gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\Gamma_{2}} \frac{1}{z-a} \mathrm{~d} z=\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z
$$

and

$$
\int_{\gamma_{1}} \frac{1}{z-a} \mathrm{~d} z+\int_{\gamma_{2}} \frac{1}{z-a} \mathrm{~d} z=\int_{C} \frac{1}{z-a} \mathrm{~d} z
$$

so that

$$
\begin{equation*}
\int_{C} \frac{1}{z-a} \mathrm{~d} z=\int_{C_{a}} \frac{1}{z-a} \mathrm{~d} z=2 \pi i \tag{*}
\end{equation*}
$$

as desired.
Observe that by constructing an appropriate picture, we were able to continuously deform C to C_{a} and show that $(*)$ held. This leads to the following fact.

Theorem 23.2. If C is a closed contour in the complex plane oriented counterclockwise and $a \in \mathbb{C}$ is in the interior of C, then

$$
\int_{C} \frac{1}{z-a} \mathrm{~d} z=2 \pi i
$$

Of course, Theorem 23.2 states that the same construction for $(*)$ holds for any contour C oriented counterclockwise surrounding the point a as shown in Figure 23.2 below.

Figure 23.2: Continuous deformation of C into C_{a}.
Example 23.3. Compute

$$
\int_{C} \frac{1}{z+i} \mathrm{~d} z
$$

where $C=\{|z|=2\}$ is the circle of radius 2 centred at 0 oriented counterclockwise.
Solution. Since $|-i|=1<2$, we see that $a=-i$ is inside C so that

$$
\int_{C} \frac{1}{z+i} \mathrm{~d} z=2 \pi i
$$

Example 23.4. Compute

$$
\int_{C} \frac{1}{2 z+i} \mathrm{~d} z
$$

where $C=\{|z|=2\}$ is the circle of radius 2 centred at 0 oriented counterclockwise.
Solution. Since the integrand is not of the form $(z-a)^{-1}$, we cannot use the fact immediately. However,

$$
\int_{C} \frac{1}{2 z+i} \mathrm{~d} z=\frac{1}{2} \int_{C} \frac{1}{z+i / 2} \mathrm{~d} z=\frac{1}{2}(2 \pi i)=\pi i
$$

since $a=-i / 2$ is inside of the circle of radius 2 centred at 0 .
Example 23.5. Compute

$$
\int_{C} \frac{3 z-2}{z^{2}-z} \mathrm{~d} z
$$

where C is the simple closed contour indicated in Figure 23.3 below.

Figure 23.3: Figure for Example 23.5.

Solution. The trick is to use partial fractions on the integrand. That is,

$$
\frac{3 z-2}{z^{2}-z}=\frac{3 z-2}{z(z-1)}=\frac{A}{z}+\frac{B}{z-1}
$$

if and only if

$$
A(z-1)+B z=(A+B) z-A=3 z-2 .
$$

This, of course, is true if and only if $A=2$ and $B=1$. That is,

$$
\frac{3 z-2}{z^{2}-z}=\frac{2}{z}+\frac{1}{z-1}
$$

and so

$$
\int_{C} \frac{3 z-2}{z^{2}-z} \mathrm{~d} z=\int_{C} \frac{2}{z} \mathrm{~d} z+\int_{C} \frac{1}{z-1} \mathrm{~d} z=2 \int_{C} \frac{1}{z} \mathrm{~d} z+\int_{C} \frac{1}{z-1} \mathrm{~d} z=2(2 \pi i)+2 \pi i=6 \pi i .
$$

Example 23.6. Compute

$$
\int_{C} \frac{3 z-2}{z^{2}-z} \mathrm{~d} z
$$

where C is the simple closed contour indicated in Figure 23.4 below.

Figure 23.4: Figure for Example 23.6.

Solution. Again we can write

$$
\int_{C} \frac{3 z-2}{z^{2}-z} \mathrm{~d} z=2 \int_{C} \frac{1}{z} \mathrm{~d} z+\int_{C} \frac{1}{z-1} \mathrm{~d} z
$$

This time, however, $(z-1)^{-1}$ is analytic inside C since 1 is not inside C. The Cauchy Integral Theorem, Basic Version tells us that

$$
\int_{C} \frac{1}{z-1} \mathrm{~d} z=0
$$

Therefore,

$$
\int_{C} \frac{3 z-2}{z^{2}-z} \mathrm{~d} z=2 \int_{C} \frac{1}{z} \mathrm{~d} z+\int_{C} \frac{1}{z-1} \mathrm{~d} z=2(2 \pi i)+0=4 \pi i .
$$

Example 23.7. Compute

$$
\int_{C} \frac{1}{z^{2}-1} \mathrm{~d} z
$$

where C is the simple closed contour indicated in Figure 23.5 below.

Figure 23.5: Figure for Example 23.7.

Solution. Using partial fractions, we find

$$
\frac{1}{z^{2}-1}=\frac{1}{(z-1)(z+1)}=\frac{1 / 2}{z-1}-\frac{1 / 2}{z+1}
$$

Since $z=1$ is not inside C, the Cauchy Integral Theorem, Basic Version tells us that

$$
\int_{C} \frac{1}{z-1} \mathrm{~d} z=0
$$

Therefore,

$$
\int_{C} \frac{1}{z^{2}-1} \mathrm{~d} z=\frac{1}{2} \int_{C} \frac{1}{z-1} \mathrm{~d} z-\frac{1}{2} \int_{C} \frac{1}{z+1} \mathrm{~d} z=0-\frac{1}{2}(2 \pi i)=-\pi i
$$

