Lecture #20: Analyticity of the Complex Logarithm Function

Definition. Suppose that \(z \in \mathbb{C} \setminus \{0\} \). We define the principal value of the logarithm of \(z \), denoted \(\text{Log} z \), to be

\[
\text{Log} z = \log |z| + i \text{Arg}(z).
\]

Proposition 20.1. The function \(f : \mathbb{C} \setminus \{0\} \rightarrow \mathbb{C} \) given by \(f(z) = \text{Log} z \) is continuous at all \(z \) except those along the negative real axis.

Proof. Since \(z \mapsto \log |z| \) is clearly continuous for all \(z \in \mathbb{C} \setminus \{0\} \) and since \(\text{Log} z = \log |z| + i \text{Arg}(z) \), the result follows from the fact that \(z \mapsto \text{Arg}(z) \) is discontinuous at each point on the nonpositive real axis. That is, let \(z = x_0 + iy \) for some \(x_0 < 0 \) fixed. If \(y \downarrow 0 \), then \(\text{Arg}(z) \downarrow \pi \), whereas if \(y \uparrow 0 \), then \(\text{Arg}(z) \uparrow -\pi \). \(\square \)

Recall that if \(f : (0, \infty) \rightarrow \mathbb{R} \) is given by \(f(x) = \log x \), then \(f'(x) = 1/x \). The same type of formula holds for the principal value of the logarithm, but must be stated very carefully.

Theorem 20.2. The function \(z \mapsto \text{Log} z \) is analytic in the domain \(D = \mathbb{C} \setminus D^* \) where

\[
D^* = \{ z \in \mathbb{C} : \text{Re}(z) \leq 0 \text{ and } \text{Im}(z) = 0 \}
\]

and satisfies

\[
\frac{d}{dz} \text{Log} z = \frac{1}{z}
\]

for \(z \in D \).

Proof. Let \(w = \text{Log} z \). We must show that

\[
\lim_{z \to z_0} \frac{w - w_0}{z - z_0}
\]

exists and equals \(1/z_0 \) for every \(z_0 \in D \). However, we know (by definition of \(\text{Log} z \)) that \(z = e^w \). We also know from Example 15.2 that \(f(w) = e^w \) is entire with \(f'(w) = e^w \). In other words,

\[
\frac{d}{dw} f(w) \bigg|_{w=w_0} = \frac{d}{dw} e^w \bigg|_{w=w_0} = \frac{dz}{dw} \bigg|_{w=w_0} = \lim_{w \to w_0} \frac{z - z_0}{w - w_0} = e^{w_0} = z_0.
\]

The next step is to observe that by continuity (Proposition 20.1), \(w \to w_0 \) as \(z \to z_0 \). Hence,

\[
\lim_{z \to z_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{w - w_0}{z - z_0}.
\]

However, compare the right side of \((**)\) with \((*)\) to conclude

\[
\frac{d}{dz} \text{Log} z \bigg|_{z=z_0} = \lim_{z \to z_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{w - w_0}{z - z_0} = \lim_{w \to w_0} \frac{1}{z_0} = \frac{1}{z_0}
\]

for every \(z_0 \in D \). \(\square \)
Remark. Assuming appropriate smoothness, we have shown that the real part of every analytic function f is harmonic. The converse, however, is not true. That is, not every smooth harmonic function $u : D \to \mathbb{R}$ is necessarily the real part of some analytic function. As an example, consider $u(z) = \log|z|$ for $z \in D = \{0 < |z| < 1\}$. It is not hard to show that u is harmonic in D. However, it can also be shown that u does not have a harmonic conjugate in D. Compare this to Problem #10 on Assignment #4. The function $u(z) = \log|z|$ for $z \in D = \{\text{Re} \ z > r\}$ is harmonic in D and does have a harmonic conjugate in D.

The Cauchy Integral Theorem

Our next goal is to investigate the conditions under which

$$\int_C f(z) \, dz = 0$$

for a closed contour C.

Theorem 20.3 (Fundamental Theorem of Calculus for Integrals over Closed Contours). Suppose that D is a domain. If $f(z)$ is continuous in D and has an antiderivative $F(z)$ throughout D (i.e., $F(z)$ is analytic in D with $F'(z) = f(z)$ for every $z \in D$), then

$$\int_C f(z) \, dz = 0$$

for any closed contour C lying entirely in D.

Proof. This follows from the usual Fundamental Theorem of Calculus. Suppose that C is parametrized by $z = z(t)$, $a \leq t \leq b$. The hypothesis that $f(z)$ is continuous in D is necessary for the contour integral

$$\int_C f(z) \, dz$$

to equal the Riemann integral

$$\int_a^b f(z(t)) \cdot z'(t) \, dt.$$

The assumption that f has an antiderivative F means that

$$\frac{d}{dt} F(z(t)) = F'(z(t)) \cdot z'(t) = f(z(t)) \cdot z'(t).$$

Therefore,

$$\int_C f(z) \, dz = \int_a^b f(z(t)) \cdot z'(t) \, dt = \int_a^b \frac{d}{dt} F(z(t)) \, dt = F(z(b)) - F(z(a))$$

by the usual Fundamental Theorem of Calculus. The assumption that C is a closed contour means that $z(a) = z(b)$ which implies $F(z(b)) = F(z(a))$. Hence,

$$\int_C f(z) \, dz = 0$$

for any closed contour C lying entirely in D.

Remark. This theorem can apply if D is an annulus and C surrounds the hole.