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Lecture #19: Contour Integration

Example 19.1. Compute

I1 =

�

C1

z dz

if C1 = {eit, 0 ≤ t ≤ π} is that part of the upper half of the unit circle going from 1 to −1.

Solution. If z(t) = eit, 0 ≤ t ≤ π, then z�(t) = ieit, and so
�

C1

z dz =

� π

0

z(t) · z�(t) dt =
� π

0

e−it · ieit dt = i

� π

0

dt = iπ.

Example 19.2. Compute

I2 =

�

C2

z dz

if C2 = {e−it, 0 ≤ t ≤ π} is that part of the lower half of the unit circle going from 1 to −1.

Solution. If z(t) = e−it, 0 ≤ t ≤ π, then z�(t) = −ieit, and so
�

C2

z dz =

� π

0

z(t) · z�(t) dt =
� π

0

eit ·−ie−it dt = −i

� π

0

dt = −iπ.

Note that the answers to the previous two examples are different; that is, even though the
contours C1 and C2 start and end at the same points, I1 �= I2. What is the difference between
this pair of examples and the pair of examples from last lecture?

Theorem 19.3 (Fundamental Theorem of Calculus for Contour Integrals). Suppose that D
is a domain. If f(z) is continuous in D and has an antiderivative F (z) throughout D (i.e.,
F (z) is analytic in D with F �(z) = f(z) for every z ∈ D), then

�

C

f(z) dz = F (z(b))− F (z(a))

for any contour C lying entirely in D.

Proof. Suppose that C lies entirely in D and is parametrized by z = z(t), a ≤ t ≤ b. From
the definition of contour integral, we have

�

C

f(z) dz =

� b

a

f(z(t)) · z�(t) dt

and note that the assumption that f(z) is continuous means that f(z(t)) · z�(t) is Riemann
integrable on [a, b]. The assumption that f has an antiderivative F means that

d

dt
F (z(t)) = F �(z(t)) · z�(t) = f(z(t)) · z�(t).
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Therefore,

�

C

f(z) dz =

� b

a

f(z(t)) · z�(t) dt =
� b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a))

by the usual Fundamental Theorem of Calculus.

Example 19.4. Compute �

C

z2 dz

where C is any contour connecting 1 and 2 + i.

Solution. Observe that f(z) = z2 is continuous in C and F (z) = z3/3 is entire with
F �(z) = f(z). Therefore, if C is any contour with z(a) = 1 and z(b) = 2 + i, then the
Fundamental Theorem of Calculus for Contour Integrals implies

�

C

z2 dz =
z3

3

����
z=2+i

− z3

3

����
z=1

=
(2 + i)3

3
− 1

3
=

1

3
+

11

3
i.

Remark. This explains why the answers to Examples 18.4 and 18.5 are the same. Note that
the function from Examples 19.1 and 19.2, namely z̄, does not have an antiderivative. This
is why the Fundamental Theorem of Calculus for Contour Integrals does not apply, and so
we are not surprised that contour integrals of z̄ do depend on the contour taken.

Example 19.5. Compute �

C

eiz dz

where C is that part of the unit circle in the first quadrant going from 1 to i.

Solution. Observe that f(z) = eiz is continuous in C and F (z) = −ieiz is entire with
F �(z) = f(z). Therefore, since C is a contour with z(a) = 1 and z(b) = i, the Fundamental
Theorem of Calculus for Contour Integrals implies

�

C

eiz dz = −ieiz
����
z=i

+ ieiz
����
z=1

= −ie−1 + iei = iei − ie−1.

The Complex Logarithm

Recall that we introduced the complex-valued logarithm function in Lecture #15. We will
now re-visit that function. For real variables, we can define the (natural) logarithm of x > 0,
written as log x, to be that unique number satisfying elog x = x. Moreover, we also know that
log(ex) = x so that the functions f(x) = ex and g(x) = log x are inverses.

Example 19.6. Solve ex = π/4 for x ∈ R.

Solution. We can use logarithms to solve this problem. That is, ex = π/4 implies x =
log(ex) = log(π/4).
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Remark. To solve the previous problem we used a key fact about real-valued logarithms,
namely

ex1 = ex2 if and only if x1 = x2,

or, equivalently,
log x1 = log x2 if and only if x1 = x2.

We have already discovered that the function ez is 2πi periodic, namely ez = ez+2πi, so that
we cannot simply define the complex-valued logarithm to be the inverse of ez.

Example 19.7. Solve ez = 1 + i for z ∈ C.

Solution. We write 1 + i in polar coordinates as 1 + i =
√
2eiπ/4 so that we need to solve

ez =
√
2eiπ/4

for z. Consider eζ = eiπ/4. One solution is ζ = iπ/4. But this is not the only solution. By
periodicity, we know eζ = eζ+2πki for any k ∈ Z. Hence,

eζ+2πki = eiπ/4

implies ζ ∈ {(π/4 + 2πk)i, k ∈ Z} and so

z ∈ {1
2
log 2 + (π/4 + 2πk)i, k ∈ Z}.

Let w ∈ C �= 0. We know that there are infinitely many values of z ∈ C such that ez = w;
see Figure 19.1.

3πi

πi

−πi

−3πi

z + 4πi

z + 2πi

z

z − 2πi

w

Figure 19.1: The image of C under the mapping ez.

However, there is a unique value of z in the fundamental region {−π < Im z ≤ π} with
ez = w. This is what we will use to define the logarithm of w; more precisely, this will be
the principal value of the logarithm.

Definition. Suppose that w ∈ C \ {0}. We define the principal value of the logarithm of w,
denoted Logw, to be

Logw = log |w|+ iArg(w).
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Remark. We are writing Log with a capital L to stress that it is the principal value of the
complex-valued logarithm. Note that log x for x ∈ R denotes the usual real-valued natural
logarithm.

Remark. The principal value of the logarithm of w �= 0 can also be defined as the unique
value of z with −π < Im z ≤ π such that ez = w.

Example 19.8. Compute Log(1 + i).

Solution. Since |1 + i| =
√
2 and Arg(1 + i) = π/4, we find

Log(1 + i) = log
√
2 + iπ/4 =

1

2
log 2 + i

π

4
.

Definition. Let w ∈ C \ {0}. The complex-valued logarithm of w is the multiple-valued
function given by

logw = log |w|+ i arg(w).

Note that this is an equality of sets; since arg(w) = {Arg(w) + 2πk, k ∈ Z}, we can also
write

logw = {log |w|+ iArg(w) + 2πki, k ∈ Z}.

Recall from Assignment #1 that arg(w1w2) = arg(w1)+ arg(w2) for all w1, w2 ∈ C, but that
Arg(w1w2) �= Arg(w1) + Arg(w2) for all w1, w2 ∈ C. This translates into similar statements
for the complex-valued logarithm and the principal value of the logarithm.

Exercise 19.9. Show that log(w1w2) = logw1 + logw2 for all w1, w2 ∈ C \ {0}. Find values
w1, w2 ∈ C \ {0} such that Log(w1w2) �= Logw1 + Logw2.
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