Lecture \#19: Contour Integration

Example 19.1. Compute

$$
I_{1}=\int_{C_{1}} \bar{z} \mathrm{~d} z
$$

if $C_{1}=\left\{e^{i t}, 0 \leq t \leq \pi\right\}$ is that part of the upper half of the unit circle going from 1 to -1 .
Solution. If $z(t)=e^{i t}, 0 \leq t \leq \pi$, then $z^{\prime}(t)=i e^{i t}$, and so

$$
\int_{C_{1}} \bar{z} \mathrm{~d} z=\int_{0}^{\pi} \overline{z(t)} \cdot z^{\prime}(t) \mathrm{d} t=\int_{0}^{\pi} e^{-i t} \cdot i e^{i t} \mathrm{~d} t=i \int_{0}^{\pi} \mathrm{d} t=i \pi
$$

Example 19.2. Compute

$$
I_{2}=\int_{C_{2}} \bar{z} \mathrm{~d} z
$$

if $C_{2}=\left\{e^{-i t}, 0 \leq t \leq \pi\right\}$ is that part of the lower half of the unit circle going from 1 to -1 .
Solution. If $z(t)=e^{-i t}, 0 \leq t \leq \pi$, then $z^{\prime}(t)=-i e^{i t}$, and so

$$
\int_{C_{2}} \bar{z} \mathrm{~d} z=\int_{0}^{\pi} \overline{z(t)} \cdot z^{\prime}(t) \mathrm{d} t=\int_{0}^{\pi} e^{i t} \cdot-i e^{-i t} \mathrm{~d} t=-i \int_{0}^{\pi} \mathrm{d} t=-i \pi
$$

Note that the answers to the previous two examples are different; that is, even though the contours C_{1} and C_{2} start and end at the same points, $I_{1} \neq I_{2}$. What is the difference between this pair of examples and the pair of examples from last lecture?

Theorem 19.3 (Fundamental Theorem of Calculus for Contour Integrals). Suppose that D is a domain. If $f(z)$ is continuous in D and has an antiderivative $F(z)$ throughout D (i.e., $F(z)$ is analytic in D with $F^{\prime}(z)=f(z)$ for every $z \in D$), then

$$
\int_{C} f(z) \mathrm{d} z=F(z(b))-F(z(a))
$$

for any contour C lying entirely in D.
Proof. Suppose that C lies entirely in D and is parametrized by $z=z(t), a \leq t \leq b$. From the definition of contour integral, we have

$$
\int_{C} f(z) \mathrm{d} z=\int_{a}^{b} f(z(t)) \cdot z^{\prime}(t) \mathrm{d} t
$$

and note that the assumption that $f(z)$ is continuous means that $f(z(t)) \cdot z^{\prime}(t)$ is Riemann integrable on $[a, b]$. The assumption that f has an antiderivative F means that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(z(t))=F^{\prime}(z(t)) \cdot z^{\prime}(t)=f(z(t)) \cdot z^{\prime}(t)
$$

Therefore,

$$
\int_{C} f(z) \mathrm{d} z=\int_{a}^{b} f(z(t)) \cdot z^{\prime}(t) \mathrm{d} t=\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} t} F(z(t)) \mathrm{d} t=F(z(b))-F(z(a))
$$

by the usual Fundamental Theorem of Calculus.
Example 19.4. Compute

$$
\int_{C} z^{2} \mathrm{~d} z
$$

where C is any contour connecting 1 and $2+i$.
Solution. Observe that $f(z)=z^{2}$ is continuous in \mathbb{C} and $F(z)=z^{3} / 3$ is entire with $F^{\prime}(z)=f(z)$. Therefore, if C is any contour with $z(a)=1$ and $z(b)=2+i$, then the Fundamental Theorem of Calculus for Contour Integrals implies

$$
\int_{C} z^{2} \mathrm{~d} z=\left.\frac{z^{3}}{3}\right|_{z=2+i}-\left.\frac{z^{3}}{3}\right|_{z=1}=\frac{(2+i)^{3}}{3}-\frac{1}{3}=\frac{1}{3}+\frac{11}{3} i .
$$

Remark. This explains why the answers to Examples 18.4 and 18.5 are the same. Note that the function from Examples 19.1 and 19.2, namely \bar{z}, does not have an antiderivative. This is why the Fundamental Theorem of Calculus for Contour Integrals does not apply, and so we are not surprised that contour integrals of \bar{z} do depend on the contour taken.

Example 19.5. Compute

$$
\int_{C} e^{i z} \mathrm{~d} z
$$

where C is that part of the unit circle in the first quadrant going from 1 to i.
Solution. Observe that $f(z)=e^{i z}$ is continuous in \mathbb{C} and $F(z)=-i e^{i z}$ is entire with $F^{\prime}(z)=f(z)$. Therefore, since C is a contour with $z(a)=1$ and $z(b)=i$, the Fundamental Theorem of Calculus for Contour Integrals implies

$$
\int_{C} e^{i z} \mathrm{~d} z=-\left.i e^{i z}\right|_{z=i}+\left.i e^{i z}\right|_{z=1}=-i e^{-1}+i e^{i}=i e^{i}-i e^{-1}
$$

The Complex Logarithm

Recall that we introduced the complex-valued logarithm function in Lecture \#15. We will now re-visit that function. For real variables, we can define the (natural) logarithm of $x>0$, written as $\log x$, to be that unique number satisfying $e^{\log x}=x$. Moreover, we also know that $\log \left(e^{x}\right)=x$ so that the functions $f(x)=e^{x}$ and $g(x)=\log x$ are inverses.

Example 19.6. Solve $e^{x}=\pi / 4$ for $x \in \mathbb{R}$.
Solution. We can use logarithms to solve this problem. That is, $e^{x}=\pi / 4$ implies $x=$ $\log \left(e^{x}\right)=\log (\pi / 4)$.

Remark. To solve the previous problem we used a key fact about real-valued logarithms, namely

$$
e^{x_{1}}=e^{x_{2}} \quad \text { if and only if } \quad x_{1}=x_{2},
$$

or, equivalently,

$$
\log x_{1}=\log x_{2} \quad \text { if and only if } \quad x_{1}=x_{2}
$$

We have already discovered that the function e^{z} is $2 \pi i$ periodic, namely $e^{z}=e^{z+2 \pi i}$, so that we cannot simply define the complex-valued logarithm to be the inverse of e^{z}.

Example 19.7. Solve $e^{z}=1+i$ for $z \in \mathbb{C}$.
Solution. We write $1+i$ in polar coordinates as $1+i=\sqrt{2} e^{i \pi / 4}$ so that we need to solve

$$
e^{z}=\sqrt{2} e^{i \pi / 4}
$$

for z. Consider $e^{\zeta}=e^{i \pi / 4}$. One solution is $\zeta=i \pi / 4$. But this is not the only solution. By periodicity, we know $e^{\zeta}=e^{\zeta+2 \pi k i}$ for any $k \in \mathbb{Z}$. Hence,

$$
e^{\zeta+2 \pi k i}=e^{i \pi / 4}
$$

implies $\zeta \in\{(\pi / 4+2 \pi k) i, \quad k \in \mathbb{Z}\}$ and so

$$
z \in\left\{\frac{1}{2} \log 2+(\pi / 4+2 \pi k) i, \quad k \in \mathbb{Z}\right\} .
$$

Let $w \in \mathbb{C} \neq 0$. We know that there are infinitely many values of $z \in \mathbb{C}$ such that $e^{z}=w$; see Figure 19.1.

Figure 19.1: The image of \mathbb{C} under the mapping e^{z}.
However, there is a unique value of z in the fundamental region $\{-\pi<\operatorname{Im} z \leq \pi\}$ with $e^{z}=w$. This is what we will use to define the logarithm of w; more precisely, this will be the principal value of the logarithm.

Definition. Suppose that $w \in \mathbb{C} \backslash\{0\}$. We define the principal value of the logarithm of w, denoted $\log w$, to be

$$
\log w=\log |w|+i \operatorname{Arg}(w)
$$

Remark. We are writing Log with a capital L to stress that it is the principal value of the complex-valued $\operatorname{logarithm}$. Note that $\log x$ for $x \in \mathbb{R}$ denotes the usual real-valued natural logarithm.

Remark. The principal value of the logarithm of $w \neq 0$ can also be defined as the unique value of z with $-\pi<\operatorname{Im} z \leq \pi$ such that $e^{z}=w$.

Example 19.8. Compute $\log (1+i)$.
Solution. Since $|1+i|=\sqrt{2}$ and $\operatorname{Arg}(1+i)=\pi / 4$, we find

$$
\log (1+i)=\log \sqrt{2}+i \pi / 4=\frac{1}{2} \log 2+i \frac{\pi}{4}
$$

Definition. Let $w \in \mathbb{C} \backslash\{0\}$. The complex-valued logarithm of w is the multiple-valued function given by

$$
\log w=\log |w|+i \arg (w)
$$

Note that this is an equality of sets; since $\arg (w)=\{\operatorname{Arg}(w)+2 \pi k, k \in \mathbb{Z}\}$, we can also write

$$
\log w=\{\log |w|+i \operatorname{Arg}(w)+2 \pi k i, k \in \mathbb{Z}\}
$$

Recall from Assignment \#1 that $\arg \left(w_{1} w_{2}\right)=\arg \left(w_{1}\right)+\arg \left(w_{2}\right)$ for all $w_{1}, w_{2} \in \mathbb{C}$, but that $\operatorname{Arg}\left(w_{1} w_{2}\right) \neq \operatorname{Arg}\left(w_{1}\right)+\operatorname{Arg}\left(w_{2}\right)$ for all $w_{1}, w_{2} \in \mathbb{C}$. This translates into similar statements for the complex-valued logarithm and the principal value of the logarithm.

Exercise 19.9. Show that $\log \left(w_{1} w_{2}\right)=\log w_{1}+\log w_{2}$ for all $w_{1}, w_{2} \in \mathbb{C} \backslash\{0\}$. Find values $w_{1}, w_{2} \in \mathbb{C} \backslash\{0\}$ such that $\log \left(w_{1} w_{2}\right) \neq \log w_{1}+\log w_{2}$.

