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Lecture #17: Applications of the Cauchy-Riemann Equations

Example 17.1. Prove that if r and θ are polar coordinates, then the functions rn cos(nθ)
and rn sin(nθ) (where n is a positive integer) are harmonic as functions of x and y.

Solution. Consider rn cos(nθ) and rn sin(nθ) where n is a positive integer. The key observa-
tion is that de Moivre’s formula tells us these are the real and imaginary parts, respectively,
of (r cos θ + ir sin θ)n; that is, if z = x+ iy = reiθ, then

zn = rneinθ = rn cos(nθ) + irn sin(nθ).

Hence, let u = rn cos(nθ) and v = rn sin(nθ). In order to show that u and v are harmonic
as functions of x and y, we can use Example 14.1 which tells us that the real and imaginary
parts of an analytic function are harmonic (assuming the partial derivatives are smooth
enough).

Therefore, we see that if we can show that f(z) = zn is analytic, we can conclude for free
from Example 14.1 that u = rn cos(nθ) and v = rn sin(nθ) are harmonic as functions of x
and y.

In order to prove that f(z) = zn is analytic, however, we need to show that f �(z0) exists for
all z0 ∈ C. Consider

lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
= lim

∆z→0

(z0 +∆z)n − zn0
∆z

.

By the binomial theorem,

(z0 +∆z)n =
n�

j=0

�
n

j

�
zn−j
0 (∆z)j = zn0 + nzn−1

0 ∆z +
n�

j=2

�
n

j

�
zn−j
0 (∆z)j,

and so
(z0 +∆z)n − zn0

∆z
= nzn−1

0 +
n�

j=2

�
n

j

�
zn−j
0 (∆z)j−1.

Since j − 1 ≥ 0 for 2 ≤ j ≤ n, we immediately deduce that

lim
∆z→0

(z0 +∆z)n − zn0
∆z

= lim
∆z→0

�
nzn−1

0 +
n�

j=2

�
n

j

�
zn−j
0 (∆z)j−1

�
= nzn−1

0

proving f(z) = zn is entire with f �(z0) = nzn−1
0 for all z0 ∈ C. In particular, u = Re(zn) =

rn cos(nθ) and v = Im(zn) = rn sin(nθ) are both harmonic as functions of x and y.
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The Cauchy-Riemann Equations and Laplace’s Equation in Polar Coordinates

An equivalent way to solve Example 17.1 is to compute uxx + uyy and vxx + vyy directly for
both u = rn cos(nθ) and v = rn sin(nθ). The difficulty with this approach is that u and v, as
written, are functions of r and θ, but the partials that we wish to compute are with respect
to x and y. Therefore, we must use the multivariable chain rule to determine ur, uθ, vr, vθ
in terms of ux, uy, vx, vy. That is, we will introduce a change of variables

U(r, θ) = u(x, y) and V (r, θ) = v(x, y)

with x = r cos θ and y = r sin θ. Observe that r2 = x2 + y2 so that 2rrx = 2x which implies

rx =
x

r
=

r cos θ

r
= cos θ.

Moreover, tan θ = y/x so that sec2 θ · θx = −y/x2 which implies

θx = − y

x2 sec2 θ
= −y cos2 θ

x2
= −r sin θ cos2 θ

r2 sin2 θ
= −sin θ

r
.

Similarly,

ry = sin θ and θy =
cos θ

r
.

By the chain rule, we now find

ux = Urrx+Uθθx = (cos θ)Ur+(−r−1 sin θ)Uθ, uy = Urry+Uθθy = (sin θ)Ur+(r−1 cos θ)Uθ,

and

vx = Vrrx + Vθθx = (cos θ)Vr + (−r−1 sin θ)Vθ, vy = Vrry + Vθθy = (sin θ)Vr + (r−1 cos θ)Vθ.

If we now assume that f(z) = u(z)+ iv(z) = U(r, θ)+ iV (r, θ) is differentiable at z0 = r0eiθ0

so that the Cauchy-Riemann equations are satisfied at z0, then

ux(z0) = vy(z0) and uy(z0) = −vx(z0).

This implies

(cos θ0)Ur(r0, θ0)− (r−1
0 sin θ0)Uθ(r0, θ0) = (sin θ0)Vr(r0, θ0) + (r−1

0 cos θ0)Vθ(r0, θ0) (∗)

and

(sin θ0)Ur(r0, θ0) + (r−1
0 cos θ0)Uθ(r0, θ0) = −(cos θ0)Vr(r0, θ0) + (r−1

0 sin θ0)Vθ(r0, θ0). (∗∗)

Simplifying (∗) and (∗∗) yields

(Ur(r0, θ0)− r−1
0 Vθ(r0, θ0)) cos θ0 − (Vr(r0, θ0) + r−1

0 Uθ(r0, θ0)) sin θ0 = 0 (†)

and
(Vr(r0, θ0) + r−1

0 Uθ(r0, θ0)) cos θ0 + (Ur(r0, θ0)− r−1
0 Vθ(r0, θ0)) sin θ0 = 0. (‡)
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If we then multiple (†) by cos θ0 and (‡) by sin θ0, and then add, we obtain

(Ur(r0, θ0)− r−1
0 Vθ(r0, θ0))(cos

2 θ0 + sin2 θ0) = 0

which implies Ur(r0, θ0) = r−1
0 Vθ(r0, θ0). On the other hand, if we then multiple (†) by

− sin θ0 and (‡) by cos θ0, and then add, we obtain

(Vr(r0, θ0) + r−1
0 Uθ(r0, θ0))(cos

2 θ0 + sin2 θ0) = 0

which implies r−1
0 Uθ(r0, θ0) = −Vr(r0, θ0).

Theorem 17.2. Let z = reiθ. If f(reiθ) = U(r, θ) + iV (r, θ) is differentiable at z0 = r0eiθ0,
then the Cauchy-Riemann equations in polar coordinates are satisfied at z0; that is,

∂U

∂r
(r0, θ0) =

1

r0

∂V

∂θ
(r0, θ0) and

1

r0

∂U

∂θ
(r0, θ0) = −∂V

∂r
(r0, θ0).

Summary. The Cauchy-Riemann equations in polar coordinates can be remembered as

Ur =
1

r
Vθ and

1

r
Uθ = −Vr.

Example 17.3. Suppose that U(r, θ) = rn cos(nθ) and V (r, θ) = rn sin(nθ). We find

Ur = nrn−1 cos(nθ)

Vθ = nrn cos(nθ)

and

Uθ = −nrn sin(nθ)

Vr = nrn−1 sin(nθ)

so that Ur = r−1Vθ and r−1Uθ = −Vr. Hence, U and V satisfy the Cauchy-Riemann equations
in polar coordinates.

We can now use the Cauchy-Riemann equations to derive Laplace’s equation in polar coor-
dinates. (Assume that all second partials exist and are sufficiently smooth so that the mixed
partials are equal.) That is, we know

ux = vy implies rUr = Vθ and uy = −vx implies Uθ = −rVr

and so taking derivatives with respect to x of the first equation and derivatives with respect
to y of the second equation implies

0 = (ux − vy)x + (uy + vx)y = (rUr − Vθ)x + (Uθ + rVr)y.

Now, using the chain rule, we find

(rUr − Vθ)x = rxUr + r(Urrrx + Uθrθx)− (Vθθθx + Vrθrx)

17–3



and
(Uθ + rVr)y = (Uθθθy + Urθry) + ryVr + r(Vrrry + Vθrθy).

Adding the previous two terms, using the equality of the mixed partials, and simplifying
implies

rxUr + rrxUrr + (rθx + ry)Uθr + θyUθθ = −ryVr − rryVrr − (rθy − rx)Vrθ + θxVθθ. (∗)

The next step is to note that

rθx + ry = r ·−sin θ

r
+ sin θ = 0 and rθy − rx = r · cos θ

r
− cos θ = 0.

so that (∗) becomes

rxUr + rrxUrr + θyUθθ = −ryVr − rryVrr + θxVθθ.

Substituting in rx, θx, ry, θy, we conclude

cos θ

�
Ur + rUrr +

1

r
Uθθ

�
= − sin θ

�
Vr + rVrr +

1

r
Vθθ

�
. (†)

If, instead, at the beginning of the derivation we had taken derivatives with respect to y of
the first equation and derivatives with respect to x of the second equation, then we would
have found

cos θ

�
Vr + rVrr +

1

r
Vθθ

�
= − sin θ

�
Ur + rUrr +

1

r
Uθθ

�
. (‡)

We now multiple (†) by cos θ, multiply (‡) by sin θ, and add, then we conclude

(cos2 θ + sin2 θ)

�
Ur + rUrr +

1

r
Uθθ

�
= 0

and so we finally arrive at Laplace’s equation in polar coordinates

Urr +
1

r
Ur +

1

r2
Uθθ = 0.

Note that we can also conclude immediately that V satisfies Laplace’s equation in polar
coordinates as well,

Vrr +
1

r
Vr +

1

r2
Vθθ = 0.

Example 17.4. Suppose that U(r, θ) = rn cos(nθ). We can now show directly that U is
harmonic. That is,

Ur = nrn−1 cos(nθ), Urr = n(n− 1)rn−2 cos(nθ), Uθ = −nrn sin(nθ), Uθθ = −n2rn cos(nθ)

so that

Urr +
1

r
Ur +

1

r2
Uθθ = n(n− 1)rn−2 cos(nθ) +

1

r
· nrn−1 cos(nθ) +

1

r2
·−n2rn cos(nθ)

= rn−2 cos(nθ)[n(n− 1) + n− n2]

= 0
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