Lecture \#16: Analytic Properties of the Complex Trigonometric Functions

Recall that we can write the real-valued functions $\sin \theta$ and $\cos \theta$ as

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

This motivates the following definition.
Definition. The complex-valued functions $\cos z$ and $\sin z$ are defined to be

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

We now make a couple of important observations.

- The function e^{z} is periodic with period $2 \pi i$ and the function $e^{i z}$ is periodic with period 2π.
- Since $e^{i z}$ and $e^{-i z}$ are both entire functions, the functions $\cos z$ and $\sin z$ are also entire.
- $\sin (z+2 \pi k)=\sin z$ and $\cos (z+2 \pi k)=\cos z$ for any integer k. This means that the fundamental region for $\cos z$ and $\sin z$ is $\{0 \leq \operatorname{Re} z<2 \pi\}$; see Figure 16.1.

Figure 16.1: The fundamental region for $\cos z$ and $\sin z$.
Example 16.1. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \sin z=\cos z \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} z} \cos z=-\sin z
$$

Solution. We find

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \sin z=\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)=\frac{i e^{i z}+i e^{-i z}}{2 i}=\frac{e^{i z}+e^{-i z}}{2}=\cos z
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \cos z=\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{e^{i z}+e^{-i z}}{2}\right)=\frac{i e^{i z}-i e^{-i z}}{2}=-\frac{e^{i z}-e^{-i z}}{2 i}=-\sin z
$$

The other complex-valued trigonometric functions are defined in the same way as their real counterparts. That is,

- $\tan z=\frac{\sin z}{\cos z}$,
- $\sec z=\frac{1}{\cos z}$,
- $\csc z=\frac{1}{\sin z}$, and
- $\cot z=\frac{1}{\tan z}=\frac{\cos z}{\sin z}$.

Note that $\cot z$ and $\csc z$ are analytic except at the zeroes of $\sin z$, namely at $z=k \pi$, $k \in \mathbb{Z}$. Also note that $\tan z$ and $\sec z$ are analytic except at the zeroes of $\cos z$, namely at $z=\pi / 2+k \pi, k \in \mathbb{Z}$.

Exercise 16.2. Show that the following identities hold for complex variables z, z_{1}, and z_{2} :

- $\sin (-z)=-\sin z, \cos (-z)=\cos z$,
- $\sin ^{2} z+\cos ^{2} z=1$,
- $\sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \sin z_{2} \cos z_{1}$,
- $\cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{2} \sin z_{1}$,
- $\sin (2 z)=2 \sin z \cos z, \cos (2 z)=\cos ^{2} z-\sin ^{2} z$.

In fact, we can also show that the differentiation formulas that hold for real-valued trigonometric functions also hold for the complex-valued ones; that is,

- $\frac{\mathrm{d}}{\mathrm{d} z} \tan z=\sec ^{2} z$,
- $\frac{\mathrm{d}}{\mathrm{d} z} \cot z=-\csc ^{2} z$,
- $\frac{\mathrm{d}}{\mathrm{d} z} \sec z=\sec z \tan z$, and
- $\frac{\mathrm{d}}{\mathrm{d} z} \csc z=-\csc z \cot z$.

Exercise 16.3. Verify the previous differentiation formulas hold.

We end this lecture with one final set of definitions. The complex-valued hyperbolic cosine function is defined to be

$$
\cosh (z)=\frac{e^{z}+e^{-z}}{2}
$$

and the complex-valued hyperbolic sine function is defined to be

$$
\sinh (z)=\frac{e^{z}-e^{-z}}{2} .
$$

Note that

$$
\cosh (i z)=\cos (z) \quad \text { and } \quad-i \sinh (i z)=\sin (z)
$$

Finally, the complex-valued hyperbolic tangent function is defined to be

$$
\tanh (z)=\frac{\sinh (z)}{\cosh (z)}=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

Exercise 16.4. Show that the following identities hold for the complex hyperbolic trigonometric functions:

- $\cosh (z)=\cos (i z)$,
- $\sinh (z)=-i \sin (i z)$,
- $\cosh ^{2}(z)-\sinh ^{2}(z)=1$,
- $\frac{\mathrm{d}}{\mathrm{d} z} \cosh (z)=\sinh (z)$,
- $\frac{\mathrm{d}}{\mathrm{d} z} \sinh (z)=\cosh (z)$.

