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Lecture #15: Analytic Properties of the Complex Exponential

Recall from Lecture #13 that we set out to determine when a function is differentiable. One
consequence of our calculations was the following. We showed that if f was differentiable
at z0, then f satisfied the Cauchy-Riemann equations at z0. The way we derived this result
was to compute f �(z0) in two ways and then equate real and imaginary parts. If we step
back, however, we can view our computations as a way of calculating f �(z0).

Theorem 15.1. Consider the function f(z) = u(z) + iv(z) defined in some neighbourhood
of z0. If f is differentiable at z0 = x0 + iy0, then

f �(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

and

f �(z0) =
∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

Remark. It is important to stress that we must still know a priori that f is differentiable
at z0 in order to conclude that its derivative is given by either of these formulas. The most
common way of doing this is to use Theorem 14.3.

Example 15.2. Consider the complex exponential function

f(z) = ez = exeiy = ex[cos y + i sin y].

Use Theorem 14.3 to show that f(z) is entire, and then use Theorem 15.1 to compute f �(z0)
for every z0 ∈ C. Also show that f(C) = C \ {0}.

Solution. If f(z) = ez = exeiy = ex[cos y + i sin y], then

∂u

∂x
(x0, y0) = ex0 cos y0,

∂v

∂x
(x0, y0) = ex0 sin y0,

and
∂v

∂y
(x0, y0) = ex0 cos y0,

∂u

∂y
(x0, y0) = −ex0 sin y0.

Observe that
∂u

∂x
(z0),

∂u

∂y
(z0),

∂v

∂x
(z0),

∂v

∂y
(z0)

exist for all z0 ∈ C and are clearly continuous at z0. Since the Cauchy-Riemann equations are
also satisfied for every z0 ∈ C, we conclude from Theorem 14.3 that f(z) = ez is differentiable
at every z0 ∈ C. Hence, ez is necessarily analytic at every z0 ∈ C so that ez is entire. We
can now apply Theorem 15.1 to conclude

f �(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) = ex0 cos y0 + iex0 sin y0 = ez0

for every z0 ∈ C.
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Observe that if z ∈ C, then ez �= 0. This follows from the fact that ex > 0 for every x ∈ R
and cos y+ i sin y �= 0 for every y ∈ R (i.e., cos y and sin y are never simultaneously equal to
0). To finish the proof that f(C) = C \ {0}, suppose that w ∈ C \ {0} and observe that

elog |w|(cos(Argw) + i sin(Argw)) = w.

In other words, if z = log |w|+ iArgw, then

ez = elog |w|+iArgw = |w|eiArg(w) = w.

Since cos y and sin y are periodic with period 2π, we conclude that

ez = ez+2πi.

That is, ez is periodic with period 2πi. Since Arg(w) ∈ (−π, π], we therefore take the
fundamental region for ez to be

{−π < Im z ≤ π}
as shown in Figure 15.1.
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Figure 15.1: The fundamental region for ez.

In fact, this is what motivates the definition of the complex logarithm function. Let w ∈ C
with w �= 0. We know that there are infinitely many values of z ∈ C such that ez = w; see
Figure 15.2.
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Figure 15.2: The image of C under the mapping ez.

However, there is a unique value of z in the fundamental region {−π < Im z ≤ π} with
ez = w. This is what we will use to define the logarithm of w; more precisely, this will be
the principal value of the logarithm.
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Definition. Suppose that w ∈ C \ {0}. We define the principal value of the logarithm of w,
denoted Logw, to be

Logw = log |w|+ iArg(w).
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