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Lecture #14: Harmonicity and the Cauchy-Riemann Equations

Recall from last class that if f(z) = u(z) + iv(z) is analytic in a domain D, then u and v
satisfy the Cauchy-Riemann equations in D, namely

ux(z0) = vy(z0) and uy(z0) = −vx(z0)

for every z0 = x0 + iy0 ∈ D.

Example 14.1. Suppose that f = u + iv is analytic in a domain D. Show that u satisfies
Laplace’s equation in D (assuming that uxx, uyy, vxy, vyx exist in D and are sufficiently
smooth so that vxy = vyx). Next show that v also satisfies Laplace’s equation in D (assuming
that vxx, vyy, uxy, uyx exist in D and are sufficiently smooth so that uxy = uyx).

Solution. Since f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is analytic in D, we know the
Cauchy-Riemann equations are satisfied at any z0 = x0 + iy0 ∈ D. This means that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

Taking the second partials of u with respect to x and y implies that

∂2u

∂x2
(x0, y0) =

∂2v

∂x∂y
(x0, y0) and

∂2v

∂y∂x
(x0, y0) = −∂2u

∂y2
(x0, y0)

and so
∂2u

∂x2
(x0, y0) +

∂2u

∂y2
(x0, y0) =

∂2v

∂x∂y
(x0, y0)−

∂2v

∂y∂x
(x0, y0) = 0.

On the other hand, taking the second partials of v with respect to x and y implies that

∂2v

∂y2
(x0, y0) =

∂2u

∂y∂x
(x0, y0) and

∂2v

∂x2
(x0, y0) = − ∂2u

∂x∂y
(x0, y0)

and so
∂2v

∂x2
(x0, y0) +

∂2v

∂y2
(x0, y0) = − ∂2u

∂x∂y
(x0, y0) +

∂2u

∂y∂x
(x0, y0) = 0.

Definition. Suppose that D ⊆ C is a domain. We say that a function u : D → R is
harmonic if each of uxx, uyy, uxy, and uyx is continuous in D and if u satisfies Laplace’s
equation in D, namely

uxx(x0, y0) + uyy(x0, y0) = 0

for every z0 = x0 + iy0 ∈ D.

Example 14.2. Suppose that u : C → R is given by u(z) = u(x, y) = x3 − 3xy2 + y. Verify
that u is harmonic in C, and then find an analytic function f : C → C with Re f(z) = u(z).
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Solution. To show that u is harmonic in C, we need to show (i) uxx, uyy, uxy, and uyx are
continuous, and (ii) uxx + uyy = 0. That is,

ux = 3x2 − 3y2 so that uxx = 6x and uyx = −6y

and
uy = −6xy + 1 so that uyy = −6x and uxy = −6y.

Clearly, uxx, uyy, uxy, and uyx are continuous and

uxx + uyy = 6x− 6x = 0

so that u is, in fact, harmonic in C. To find an analytic function f with Re f(z) = u(z)
means that we must find v(z) such that f(z) = u(z) + iv(z) is analytic in C. Note that v(z)
is called a harmonic conjugate of u(z). (As we will see shortly, v(z) is not unique.) Since f is
assumed to be analytic, we know that u and v must satisfy the Cauchy-Riemann equations.
That is,

ux = vy implies vy = 3x2 − 3y2

and
uy = −vx implies vx = 6xy − 1.

Integrating vy implies
v(x, y) = 3x2y − y3 + C1(x)

and integrating vx implies that

v(x, y) = 3x2y − x+ C2(y).

By comparing these two expressions for v(x, y), we see that v(x, y) must be of the form

v(x, y) = 3x2y − y3 − x+ C

where C is an arbitrary real constant. Since the problem asks us to find one analytic function
f with Re f(z) = u(z), the one we’ll choose is

f(z) = f(x, y) = u(x, y) + iv(x, y) = x3 − 3xy2 + y + i(3x2y − y3 − x+ 312).

It is worth noting that we can write f(z) as a function of z as follows:

f(z) = z3 − iz + 312i.

We end this lecture with a partial converse to the Cauchy-Riemann equations. As we demon-
strated last lecture, if we know that f �(z0) exists, then the Cauchy-Riemann equations are
satisfied at z0. However, as we saw in Exercise 13.7, it is possible for the Cauchy-Riemann
equations to be satisfied at a point, yet for the function not to be differentiable at that point.
The following theorem, whose proof may be found on pages 74–76 of the text by Saff and
Snider, gives a sufficient condition for a function to be differentiable at z0 in terms of the
Cauchy-Riemann equations.
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Theorem 14.3. Let f(z) be defined in some neighbourhood D of the point z0 = x0 + iy0. If
the Cauchy-Riemann equations are satisfied at z0, namely

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0),

and if
∂u

∂x
,

∂u

∂y
,

∂v

∂x
,

∂v

∂y

all exist in D and are continuous at z0, then f is differentiable at z0.

Definition. An entire function is one that is analytic in the entire complex plane.
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