Lecture \#14: Harmonicity and the Cauchy-Riemann Equations

Recall from last class that if $f(z)=u(z)+i v(z)$ is analytic in a domain D, then u and v satisfy the Cauchy-Riemann equations in D, namely

$$
u_{x}\left(z_{0}\right)=v_{y}\left(z_{0}\right) \quad \text { and } \quad u_{y}\left(z_{0}\right)=-v_{x}\left(z_{0}\right)
$$

for every $z_{0}=x_{0}+i y_{0} \in D$.
Example 14.1. Suppose that $f=u+i v$ is analytic in a domain D. Show that u satisfies Laplace's equation in D (assuming that $u_{x x}, u_{y y}, v_{x y}, v_{y x}$ exist in D and are sufficiently smooth so that $v_{x y}=v_{y x}$). Next show that v also satisfies Laplace's equation in D (assuming that $v_{x x}, v_{y y}, u_{x y}, u_{y x}$ exist in D and are sufficiently smooth so that $\left.u_{x y}=u_{y x}\right)$.

Solution. Since $f(z)=u(z)+i v(z)=u(x, y)+i v(x, y)$ is analytic in D, we know the Cauchy-Riemann equations are satisfied at any $z_{0}=x_{0}+i y_{0} \in D$. This means that

$$
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) .
$$

Taking the second partials of u with respect to x and y implies that

$$
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} v}{\partial x \partial y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial^{2} v}{\partial y \partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial^{2} u}{\partial y^{2}}\left(x_{0}, y_{0}\right)
$$

and so

$$
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{0}, y_{0}\right)+\frac{\partial^{2} u}{\partial y^{2}}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} v}{\partial x \partial y}\left(x_{0}, y_{0}\right)-\frac{\partial^{2} v}{\partial y \partial x}\left(x_{0}, y_{0}\right)=0 .
$$

On the other hand, taking the second partials of v with respect to x and y implies that

$$
\frac{\partial^{2} v}{\partial y^{2}}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} u}{\partial y \partial x}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial^{2} v}{\partial x^{2}}\left(x_{0}, y_{0}\right)=-\frac{\partial^{2} u}{\partial x \partial y}\left(x_{0}, y_{0}\right)
$$

and so

$$
\frac{\partial^{2} v}{\partial x^{2}}\left(x_{0}, y_{0}\right)+\frac{\partial^{2} v}{\partial y^{2}}\left(x_{0}, y_{0}\right)=-\frac{\partial^{2} u}{\partial x \partial y}\left(x_{0}, y_{0}\right)+\frac{\partial^{2} u}{\partial y \partial x}\left(x_{0}, y_{0}\right)=0 .
$$

Definition. Suppose that $D \subseteq \mathbb{C}$ is a domain. We say that a function $u: D \rightarrow \mathbb{R}$ is harmonic if each of $u_{x x}, u_{y y}, u_{x y}$, and $u_{y x}$ is continuous in D and if u satisfies Laplace's equation in D, namely

$$
u_{x x}\left(x_{0}, y_{0}\right)+u_{y y}\left(x_{0}, y_{0}\right)=0
$$

for every $z_{0}=x_{0}+i y_{0} \in D$.
Example 14.2. Suppose that $u: \mathbb{C} \rightarrow \mathbb{R}$ is given by $u(z)=u(x, y)=x^{3}-3 x y^{2}+y$. Verify that u is harmonic in \mathbb{C}, and then find an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ with $\operatorname{Re} f(z)=u(z)$.

Solution. To show that u is harmonic in \mathbb{C}, we need to show (i) $u_{x x}, u_{y y}, u_{x y}$, and $u_{y x}$ are continuous, and (ii) $u_{x x}+u_{y y}=0$. That is,

$$
u_{x}=3 x^{2}-3 y^{2} \text { so that } u_{x x}=6 x \text { and } u_{y x}=-6 y
$$

and

$$
u_{y}=-6 x y+1 \text { so that } u_{y y}=-6 x \text { and } u_{x y}=-6 y
$$

Clearly, $u_{x x}, u_{y y}, u_{x y}$, and $u_{y x}$ are continuous and

$$
u_{x x}+u_{y y}=6 x-6 x=0
$$

so that u is, in fact, harmonic in \mathbb{C}. To find an analytic function f with $\operatorname{Re} f(z)=u(z)$ means that we must find $v(z)$ such that $f(z)=u(z)+i v(z)$ is analytic in \mathbb{C}. Note that $v(z)$ is called a harmonic conjugate of $u(z)$. (As we will see shortly, $v(z)$ is not unique.) Since f is assumed to be analytic, we know that u and v must satisfy the Cauchy-Riemann equations. That is,

$$
u_{x}=v_{y} \quad \text { implies } \quad v_{y}=3 x^{2}-3 y^{2}
$$

and

$$
u_{y}=-v_{x} \quad \text { implies } \quad v_{x}=6 x y-1 .
$$

Integrating v_{y} implies

$$
v(x, y)=3 x^{2} y-y^{3}+C_{1}(x)
$$

and integrating v_{x} implies that

$$
v(x, y)=3 x^{2} y-x+C_{2}(y)
$$

By comparing these two expressions for $v(x, y)$, we see that $v(x, y)$ must be of the form

$$
v(x, y)=3 x^{2} y-y^{3}-x+C
$$

where C is an arbitrary real constant. Since the problem asks us to find one analytic function f with $\operatorname{Re} f(z)=u(z)$, the one we'll choose is

$$
f(z)=f(x, y)=u(x, y)+i v(x, y)=x^{3}-3 x y^{2}+y+i\left(3 x^{2} y-y^{3}-x+312\right)
$$

It is worth noting that we can write $f(z)$ as a function of z as follows:

$$
f(z)=z^{3}-i z+312 i .
$$

We end this lecture with a partial converse to the Cauchy-Riemann equations. As we demonstrated last lecture, if we know that $f^{\prime}\left(z_{0}\right)$ exists, then the Cauchy-Riemann equations are satisfied at z_{0}. However, as we saw in Exercise 13.7, it is possible for the Cauchy-Riemann equations to be satisfied at a point, yet for the function not to be differentiable at that point. The following theorem, whose proof may be found on pages $74-76$ of the text by Saff and Snider, gives a sufficient condition for a function to be differentiable at z_{0} in terms of the Cauchy-Riemann equations.

Theorem 14.3. Let $f(z)$ be defined in some neighbourhood D of the point $z_{0}=x_{0}+i y_{0}$. If the Cauchy-Riemann equations are satisfied at z_{0}, namely

$$
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)
$$

and if

$$
\frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial y}
$$

all exist in D and are continuous at z_{0}, then f is differentiable at z_{0}.
Definition. An entire function is one that is analytic in the entire complex plane.

